A question I got on my last interview:
Design a function
f, such that:f(f(n)) == -nWhere
n<
A C++ version, probably bending the rules somewhat but works for all numeric types (floats, ints, doubles) and even class types that overload the unary minus:
template <class T>
struct f_result
{
T value;
};
template <class T>
f_result <T> f (T n)
{
f_result <T> result = {n};
return result;
}
template <class T>
T f (f_result <T> n)
{
return -n.value;
}
void main (void)
{
int n = 45;
cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
float p = 3.14f;
cout << "f(f(" << p << ")) = " << f(f(p)) << endl;
}
I could imagine using the 31st bit as an imaginary (i) bit would be an approach that would support half the total range.
Using complex numbers, you can effectively divide the task of negating a number into two steps:
The great thing is that you don't need any special handling code. Just multiplying by i does the job.
But you're not allowed to use complex numbers. So you have to somehow create your own imaginary axis, using part of your data range. Since you need exactly as much imaginary (intermediate) values as initial values, you are left with only half the data range.
I tried to visualize this on the following figure, assuming signed 8-bit data. You would have to scale this for 32-bit integers. The allowed range for initial n is -64 to +63. Here's what the function does for positive n:
For negative n, the function uses the intermediate range -65..-128.

:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
The problem states "32-bit signed integers" but doesn't specify whether they are twos-complement or ones-complement.
If you use ones-complement then all 2^32 values occur in cycles of length four - you don't need a special case for zero, and you also don't need conditionals.
In C:
int32_t f(int32_t x)
{
return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}
This works by
After two passes we have the bitwise inverse of the original value. Which in ones-complement representation is equivalent to negation.
Examples:
Pass | x
-----+-------------------
0 | 00000001 (+1)
1 | 0001FFFF (+131071)
2 | FFFFFFFE (-1)
3 | FFFE0000 (-131071)
4 | 00000001 (+1)
Pass | x
-----+-------------------
0 | 00000000 (+0)
1 | 0000FFFF (+65535)
2 | FFFFFFFF (-0)
3 | FFFF0000 (-65535)
4 | 00000000 (+0)
I'm not actually trying to give a solution to the problem itself, but do have a couple of comments, as the question states this problem was posed was part of a (job?) interview:
int.MinValue to int.MaxValue, and for each n in that range call f(f(n)) and checking the result is -n), telling I would then use Test Driven Development to get to such a function.Oh, this answer assumes the interview was for a C# programming related position. Would of course be a silly answer if the interview was for a math related position. ;-)