The best example I\'ve got is that I want to sort Names based on their Score.
vector Names {\"Karl\", \"Martin\", \"Paul\", \"Jennie\"};
vecto
As already suggested in other answers: Combining the name and the score of each individual is likely the simplest solution.
Generically, this can be achieved with what is sometimes referred to as a "zip" operation: Combining two vectors into a vector of pairs - along with a corresponding "unzip".
Implemented generically, this may look as follows:
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
#include <iterator>
// Fill the zipped vector with pairs consisting of the
// corresponding elements of a and b. (This assumes
// that the vectors have equal length)
template <typename A, typename B>
void zip(
const std::vector<A> &a,
const std::vector<B> &b,
std::vector<std::pair<A,B>> &zipped)
{
for(size_t i=0; i<a.size(); ++i)
{
zipped.push_back(std::make_pair(a[i], b[i]));
}
}
// Write the first and second element of the pairs in
// the given zipped vector into a and b. (This assumes
// that the vectors have equal length)
template <typename A, typename B>
void unzip(
const std::vector<std::pair<A, B>> &zipped,
std::vector<A> &a,
std::vector<B> &b)
{
for(size_t i=0; i<a.size(); i++)
{
a[i] = zipped[i].first;
b[i] = zipped[i].second;
}
}
int main(int argc, char* argv[])
{
std::vector<std::string> names {"Karl", "Martin", "Paul", "Jennie"};
std::vector<int> score {45, 5, 14, 24};
// Zip the vectors together
std::vector<std::pair<std::string,int>> zipped;
zip(names, score, zipped);
// Sort the vector of pairs
std::sort(std::begin(zipped), std::end(zipped),
[&](const auto& a, const auto& b)
{
return a.second > b.second;
});
// Write the sorted pairs back to the original vectors
unzip(zipped, names, score);
for(size_t i=0; i<names.size(); i++)
{
std::cout << names[i] << " : " << score[i] << std::endl;
}
return 0;
}
Best way to do this would be to have a struct which combines the names with their scores and have one vector.
struct Person
{
std::string Name;
int Score;
};
Then you can declare your vector:
std::vector<Person> people{ { "Karl", 45 }, { "Martin", 5 }, { "Paul", 14 } };
And sorting it is easy with std::sort
from <algorithm>
:
std::sort(people.begin(), people.end(),
[](const auto& i, const auto& j) { return i.Score < j.Score; } );
Or you can change the lambda if you want to sort in descending order:
std::sort(people.begin(), people.end(),
[](const auto& i, const auto& j) { return i.Score > j.Score; } );
One way you could do this would be to store the Names and Scores in a single data structure such as a std::vector<std::pair<std::string,int>>
and then sorting can be done as follows:
#include <algorithm>
#include <vector>
#include <string>
#include <utility>
//...
std::vector<std::pair<std::string, int>> names_scores_vec;
// ... populate names_scores_vec...
// lambda for sorting, change to > for descending order
auto sort_by_scores = [](const std::pair<string,int>& _lhs,
const std::pair<string,int>& _rhs) { return _lhs.second < _rhs.second; };
std::sort(names_scores_vec.begin(), names_scores_vec.end(), sort_by_scores);
Alternatively, use storage such as a std::map
or std::multimap
if you want repeated keys (i.e. repeated names allowed).
So many asked this question and nobody came up with a satisfactory answer. Here is a std::sort helper that enables to sort two vectors simultaneously, taking into account the values of only one vector. This solution is based on a custom RadomIt (random iterator), and operates directly on the original vector data, without temporary copies, structure rearrangement or additional indices:
namespace std {
namespace sort_helper {
template <typename _Data, typename _Order>
struct value_reference_t;
template <typename _Data, typename _Order>
struct value_t {
_Data data;
_Order val;
inline value_t(_Data _data, _Order _val) : data(_data), val(_val) {}
inline value_t(const value_reference_t<_Data,_Order>& rhs);
};
template <typename _Data, typename _Order>
struct value_reference_t {
_Data* pdata;
_Order* pval;
value_reference_t(_Data* _itData, _Order* _itVal) : pdata(_itData), pval(_itVal) {}
inline value_reference_t& operator = (const value_reference_t& rhs) { *pdata = *rhs.pdata; *pval = *rhs.pval; return *this; }
inline value_reference_t& operator = (const value_t<_Data,_Order>& rhs) { *pdata = rhs.data; *pval = rhs.val; return *this; }
inline bool operator < (const value_reference_t& rhs) { return *pval < *rhs.pval; }
};
template <typename _Data, typename _Order>
struct value_iterator_t :
iterator< random_access_iterator_tag, value_t<_Data,_Order>, ptrdiff_t, value_t<_Data,_Order>*, value_reference_t<_Data,_Order> >
{
_Data* itData;
_Order* itVal;
value_iterator_t(_Data* _itData, _Order* _itVal) : itData(_itData), itVal(_itVal) {}
inline ptrdiff_t operator - (const value_iterator_t& rhs) const { return itVal - rhs.itVal; }
inline value_iterator_t operator + (ptrdiff_t off) const { return value_iterator_t(itData + off, itVal + off); }
inline value_iterator_t operator - (ptrdiff_t off) const { return value_iterator_t(itData - off, itVal - off); }
inline value_iterator_t& operator ++ () { ++itData; ++itVal; return *this; }
inline value_iterator_t& operator -- () { --itData; --itVal; return *this; }
inline value_iterator_t operator ++ (int) { return value_iterator_t(itData++, itVal++); }
inline value_iterator_t operator -- (int) { return value_iterator_t(itData--, itVal--); }
inline value_t<_Data,_Order> operator * () const { return value_t<_Data,_Order>(*itData, *itVal); }
inline value_reference_t<_Data,_Order> operator * () { return value_reference_t<_Data,_Order>(itData, itVal); }
inline bool operator < (const value_iterator_t& rhs) const { return itVal < rhs.itVal; }
inline bool operator == (const value_iterator_t& rhs) const { return itVal == rhs.itVal; }
inline bool operator != (const value_iterator_t& rhs) const { return itVal != rhs.itVal; }
};
template <typename _Data, typename _Order>
inline value_t<_Data,_Order>::value_t(const value_reference_t<_Data,_Order>& rhs)
: data(*rhs.pdata), val(*rhs.pval) {}
template <typename _Data, typename _Order>
bool operator < (const value_t<_Data,_Order>& lhs, const value_reference_t<_Data,_Order>& rhs) {
return lhs.val < *rhs.pval; }
template <typename _Data, typename _Order>
bool operator < (const value_reference_t<_Data,_Order>& lhs, const value_t<_Data,_Order>& rhs) {
return *lhs.pval < rhs.val; }
template <typename _Data, typename _Order>
void swap(value_reference_t<_Data,_Order> lhs, value_reference_t<_Data,_Order> rhs) {
std::swap(*lhs.pdata, *rhs.pdata);
std::swap(*lhs.pval, *rhs.pval); }
} // namespace sort_helper
} // namespace std
And this is an usage example that sorts both Names and Age based on Age values, employing standard std::sort:
char* Names[] = { "Karl", "Paul", "Martin", "Jennie" };
int Age[] = { 45, 14, 5, 24 };
typedef std::sort_helper::value_iterator_t<char*,int> IndexIt;
std::sort(IndexIt(Names, Age), IndexIt(Names+4, Age+4));
sorted to:
{ "Martin", "Paul", "Jennie", "Karl" };
{ 5, 14, 24, 45 };
Code tested on Visual Studio 2017 and GCC 5.4.0.
An alternative to consolidating the names and scores into a single structure is to create an index list and sort that:
std::vector<int> indices(Names.size());
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(),
[&](int A, int B) -> bool {
return Score[A] < Score[B];
});
Now indices
can be used to index Names
and Scores
in the desired sorted order.
If you cannot merge the data into a vector of pairs or struct with both, you could create a vector of iterators, or the indexes from 0 to size-1. Then sort this using a custom comparator. Finally, create a new vector, populating it using the iterators or indexes.
template<class T1, class A1, class T2, class A2>
std::vector<T1, A1> sort_by(
std::vector<T1,A1> const& vin, std::vector<T2,A2> const& keys
){
std::vector<std::size_t> is;
is.reserve(vin.size());
for (auto&& unused:keys)
is.push_back(is.size());
std::sort(begin(is),end(is),[&](std::size_t l, std::size_t r){
return keys[l]<keys[r];
});
std::vector<T1, A1> r;
r.reserve(vin.size());
for(std::size_t i:is)
r.push_back(vin[i]);
return r;
}