We can easily get random floating point numbers within a desired range [X,Y)
(note that X is inclusive and Y is exclusive) with the function listed below since
I believe there is much better decision but this one should work :)
function randomInRange(min, max) {
return Math.random() < 0.5 ? ((1-Math.random()) * (max-min) + min) : (Math.random() * (max-min) + min);
}
Given the "extremely large" number of values between 0 and 1, does it really matter? The chances of actually hitting 1 are tiny, so it's very unlikely to make a significant difference to anything you're doing.
private static double random(double min, double max) {
final double r = Math.random();
return (r >= 0.5d ? 1.5d - r : r) * (max - min) + min;
}
I am fairly less experienced, So I am also looking for solutions as well.
This is my rough thought:
Random number generators produce numbers in [0,1) instead of [0,1],
Because [0,1) is an unit length that can be followed by [1,2) and so on without overlapping.
For random[x, y], You can do this:
float randomInclusive(x, y){
float MIN = smallest_value_above_zero;
float result;
do{
result = random(x, (y + MIN));
} while(result > y);
return result;
}
Where all values in [x, y] has the same possibility to be picked, and you can reach y now.
How about this?
function randomInRange(min, max){
var n = Math.random() * (max - min + 0.1) + min;
return n > max ? randomInRange(min, max) : n;
}
If you get stack overflow on this I'll buy you a present.
-- EDIT: never mind about the present. I got wild with:
randomInRange(0, 0.0000000000000000001)
and got stack overflow.
Just pick your half-open interval slightly bigger, so that your chosen closed interval is a subset. Then, keep generating the random variable until it lands in said closed interval.
Example: If you want something uniform in [3,8], then repeatedly regenerate a uniform random variable in [3,9) until it happens to land in [3,8].
function randomInRangeInclusive(min,max) {
var ret;
for (;;) {
ret = min + ( Math.random() * (max-min) * 1.1 );
if ( ret <= max ) { break; }
}
return ret;
}
Note: The amount of times you generate the half-open R.V. is random and potentially infinite, but you can make the expected number of calls otherwise as close to 1 as you like, and I don't think there exists a solution that doesn't potentially call infinitely many times.