void main()
{
float a = 0.7;
if (a < 0.7)
printf(\"c\");
else
printf(\"c++\");
}
In the above question for 0.7, \"
Another good resource to see how floating point numbers are stored as binary in computers is Wikipedia's page on IEEE-754.
basically with float you get 32 bits that encode
VALUE = SIGN * MANTISSA * 2 ^ (128 - EXPONENT)
32-bits = 1-bit 23-bits 8-bits
and that is stored as
MSB LSB
[SIGN][EXPONENT][MANTISSA]
since you only get 23 bits, that's the amount of "precision" you can store. If you are trying to represent a fraction that is irrational (or repeating) in base 2, the sequence of bits will be "rounded off" at the 23rd bit.
0.7 base 10 is 7 / 10 which in binary is 0b111 / 0b1010 you get:
0.1011001100110011001100110011001100110011001100110011... etc
Since this repeats, in fixed precision there is no way to exactly represent it. The same goes for 0.8 which in binary is:
0.1100110011001100110011001100110011001100110011001101... etc
To see what the fixed precision value of these numbers is you have to "cut them off" at the number of bits you and do the math. The only trick is you the leading 1 is implied and not stored so you technically get an extra bit of precision. Because of rounding, the last bit will be a 1 or a 0 depending on the value of the truncated bit.
So the value of 0.7 is effectively 11,744,051 / 2^24 (no rounding effect) = 0.699999988 and the value of 0.8 is effectively 13,421,773 / 2^24 (rounded up) = 0.800000012.
That's all there is to it :)
Floating point comparisons are not reliable, whatever you do. You should use threshold tolerant comparison/ epsilon comparison of floating points.
Try IEEE-754 Floating-Point Conversion and see what you get. :)