Why is pandas.to_datetime slow for non standard time format such as '2014/12/31'

前端 未结 3 1935
悲哀的现实
悲哀的现实 2020-12-01 03:15

I have a .csv file in such format

timestmp, p
2014/12/31 00:31:01:9200, 0.7
2014/12/31 00:31:12:1700, 1.9
...

and when read via pd.re

相关标签:
3条回答
  • 2020-12-01 04:00

    This question has already been sufficiently answered, but I wanted to add in the results of some tests I was running to optimize my own code.

    I was getting this format from an API: "Wed Feb 08 17:58:56 +0000 2017".

    Using the default pd.to_datetime(SERIES) with an implicit conversion, it was taking over an hour to process roughly 20 million rows (depending on how much free memory I had).

    That said, I tested three different conversions:

    # explicit conversion of essential information only -- parse dt str: concat
    def format_datetime_1(dt_series):
    
        def get_split_date(strdt):
            split_date = strdt.split()
            str_date = split_date[1] + ' ' + split_date[2] + ' ' + split_date[5] + ' ' + split_date[3]
            return str_date
    
        dt_series = pd.to_datetime(dt_series.apply(lambda x: get_split_date(x)), format = '%b %d %Y %H:%M:%S')
    
        return dt_series
    
    # explicit conversion of what datetime considers "essential date representation" -- parse dt str: del then join
    def format_datetime_2(dt_series):
    
        def get_split_date(strdt):
            split_date = strdt.split()
            del split_date[4]
            str_date = ' '.join(str(s) for s in split_date)
            return str_date
    
        dt_series = pd.to_datetime(dt_series.apply(lambda x: get_split_date(x)), format = '%c')
    
        return dt_series
    
    # explicit conversion of what datetime considers "essential date representation" -- parse dt str: concat
    def format_datetime_3(dt_series):
    
        def get_split_date(strdt):
            split_date = strdt.split()
            str_date = split_date[0] + ' ' + split_date[1] + ' ' + split_date[2] + ' ' + split_date[3] + ' ' + split_date[5]
            return str_date
    
        dt_series = pd.to_datetime(dt_series.apply(lambda x: get_split_date(x)), format = '%c')
    
        return dt_series
    
    # implicit conversion
    def format_datetime_baseline(dt_series):
    
        return pd.to_datetime(dt_series)
    

    This was the results:

    # sample of 250k rows
    dt_series_sample = df['created_at'][:250000]
    
    %timeit format_datetime_1(dt_series_sample)        # best of 3: 1.56 s per loop
    %timeit format_datetime_2(dt_series_sample)        # best of 3: 2.09 s per loop
    %timeit format_datetime_3(dt_series_sample)        # best of 3: 1.72 s per loop
    %timeit format_datetime_baseline(dt_series_sample) # best of 3: 1min 9s per loop
    

    The first test results in an impressive 97.7% runtime reduction!

    Somewhat surprisingly, it looks like even the "appropriate representation" takes longer, probably because it is semi-implicit.

    Conclusion: the more explicit you are, the faster it will run.

    0 讨论(0)
  • 2020-12-01 04:01

    Often I am unable to specify a standard date format ahead of time because I simply do not know how each client will choose to submit it. The dates are unpredictably formatted and often missing.

    In these cases, instead of using pd.to_datetime, I have found it more efficient to write my own wrapper to dateutil.parser.parse:

    import pandas as pd
    from dateutil.parser import parse
    import numpy as np
    
    def parseDateStr(s):
        if s != '':
            try:
                return np.datetime64(parse(s))
            except ValueError:
                return np.datetime64('NaT')
        else: return np.datetime64('NaT')             
    
    # Example data:
    someSeries=pd.Series(  ['NotADate','','1-APR-16']*10000 )
    
    # Compare times:
    %timeit pd.to_datetime(someSeries, errors='coerce') #1 loop, best of 3: 1.78 s per loop
    %timeit someSeries.apply(parseDateStr)              #1 loop, best of 3: 904 ms per loop
    
    # The approaches return identical results:
    someSeries.apply(parseDateStr).equals(pd.to_datetime(someSeries, errors='coerce')) # True
    

    In this case the runtime is cut in half, but YMMV.

    0 讨论(0)
  • 2020-12-01 04:15

    This is because pandas falls back to dateutil.parser.parse for parsing the strings when it has a non-default format or when no format string is supplied (this is much more flexible, but also slower).

    As you have shown above, you can improve the performance by supplying a format string to to_datetime. Or another option is to use infer_datetime_format=True


    Apparently, the infer_datetime_format cannot infer when there are microseconds. With an example without those, you can see a large speed-up:

    In [28]: d = '2014-12-24 01:02:03'
    
    In [29]: c = re.sub('-', '/', d)
    
    In [30]: s_c = pd.Series([c]*10000)
    
    In [31]: %timeit pd.to_datetime(s_c)
    1 loops, best of 3: 1.14 s per loop
    
    In [32]: %timeit pd.to_datetime(s_c, infer_datetime_format=True)
    10 loops, best of 3: 105 ms per loop
    
    In [33]: %timeit pd.to_datetime(s_c, format="%Y/%m/%d %H:%M:%S")
    10 loops, best of 3: 99.5 ms per loop
    
    0 讨论(0)
提交回复
热议问题