OpenCV 2.4.1 - computing SURF descriptors in Python

后端 未结 2 987
悲哀的现实
悲哀的现实 2020-12-01 03:30

I\'m trying to update my code to use cv2.SURF() as opposed to cv2.FeatureDetector_create(\"SURF\") and cv2.DescriptorExtractor_create(\"SURF\

相关标签:
2条回答
  • 2020-12-01 03:36

    I am not sure whether i understand your questions correctly. But if you are looking for a sample of matching SURF keypoints, a very simple and basic one is below, which is similar to template matching:

    import cv2
    import numpy as np
    
    # Load the images
    img =cv2.imread('messi4.jpg')
    
    # Convert them to grayscale
    imgg =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
    # SURF extraction
    surf = cv2.SURF()
    kp, descritors = surf.detect(imgg,None,useProvidedKeypoints = False)
    
    # Setting up samples and responses for kNN
    samples = np.array(descritors)
    responses = np.arange(len(kp),dtype = np.float32)
    
    # kNN training
    knn = cv2.KNearest()
    knn.train(samples,responses)
    
    # Now loading a template image and searching for similar keypoints
    template = cv2.imread('template.jpg')
    templateg= cv2.cvtColor(template,cv2.COLOR_BGR2GRAY)
    keys,desc = surf.detect(templateg,None,useProvidedKeypoints = False)
    
    for h,des in enumerate(desc):
        des = np.array(des,np.float32).reshape((1,128))
        retval, results, neigh_resp, dists = knn.find_nearest(des,1)
        res,dist =  int(results[0][0]),dists[0][0]
    
        if dist<0.1: # draw matched keypoints in red color
            color = (0,0,255)
        else:  # draw unmatched in blue color
            print dist
            color = (255,0,0)
    
        #Draw matched key points on original image
        x,y = kp[res].pt
        center = (int(x),int(y))
        cv2.circle(img,center,2,color,-1)
    
        #Draw matched key points on template image
        x,y = keys[h].pt
        center = (int(x),int(y))
        cv2.circle(template,center,2,color,-1)
    
    cv2.imshow('img',img)
    cv2.imshow('tm',template)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    Below are the results I got (copy pasted template image on original image using paint):

    enter image description here

    enter image description here

    As you can see, there are some small mistakes. But for a startup, hope it is OK.

    0 讨论(0)
  • 2020-12-01 03:40

    An improvement of the above algorithm is:

    import cv2
    import numpy
    
    opencv_haystack =cv2.imread('haystack.jpg')
    opencv_needle =cv2.imread('needle.jpg')
    
    ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
    hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)
    
    # build feature detector and descriptor extractor
    hessian_threshold = 85
    detector = cv2.SURF(hessian_threshold)
    (hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
    (nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)
    
    # extract vectors of size 64 from raw descriptors numpy arrays
    rowsize = len(hdescriptors) / len(hkeypoints)
    if rowsize > 1:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        #print hrows.shape, nrows.shape
    else:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32)
        nrows = numpy.array(ndescriptors, dtype = numpy.float32)
        rowsize = len(hrows[0])
    
    # kNN training - learn mapping from hrow to hkeypoints index
    samples = hrows
    responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
    #print len(samples), len(responses)
    knn = cv2.KNearest()
    knn.train(samples,responses)
    
    # retrieve index and value through enumeration
    for i, descriptor in enumerate(nrows):
        descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
        #print i, descriptor.shape, samples[0].shape
        retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
        res, dist =  int(results[0][0]), dists[0][0]
        #print res, dist
    
        if dist < 0.1:
            # draw matched keypoints in red color
            color = (0, 0, 255)
        else:
            # draw unmatched in blue color
            color = (255, 0, 0)
        # draw matched key points on haystack image
        x,y = hkeypoints[res].pt
        center = (int(x),int(y))
        cv2.circle(opencv_haystack,center,2,color,-1)
        # draw matched key points on needle image
        x,y = nkeypoints[i].pt
        center = (int(x),int(y))
        cv2.circle(opencv_needle,center,2,color,-1)
    
    cv2.imshow('haystack',opencv_haystack)
    cv2.imshow('needle',opencv_needle)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    You can uncomment the print statements to get a better idea about the data structures used.

    0 讨论(0)
提交回复
热议问题