For a Data Structures project, I must find the shortest path between two words (like \"cat\"
and \"dog\"
), changing only one letter at a time. We a
There are methods of varying efficiency for finding links - you can construct a complete graph for each word length, or you can construct a BK-Tree, for example, but your friend is right - BFS is the most efficient algorithm.
There is, however, a way to significantly improve your runtime: Instead of doing a single BFS from the source node, do two breadth first searches, starting at either end of the graph, and terminating when you find a common node in their frontier sets. The amount of work you have to do is roughly half what is required if you search from only one end.
bool isadjacent(string& a, string& b)
{
int count = 0; // to store count of differences
int n = a.length();
// Iterate through all characters and return false
// if there are more than one mismatching characters
for (int i = 0; i < n; i++)
{
if (a[i] != b[i]) count++;
if (count > 1) return false;
}
return count == 1 ? true : false;
}
// A queue item to store word and minimum chain length // to reach the word.
struct QItem
{
string word;
int len;
};
// Returns length of shortest chain to reach 'target' from 'start' // using minimum number of adjacent moves. D is dictionary
int shortestChainLen(string& start, string& target, set<string> &D)
{
// Create a queue for BFS and insert 'start' as source vertex
queue<QItem> Q;
QItem item = {start, 1}; // Chain length for start word is 1
Q.push(item);
// While queue is not empty
while (!Q.empty())
{
// Take the front word
QItem curr = Q.front();
Q.pop();
// Go through all words of dictionary
for (set<string>::iterator it = D.begin(); it != D.end(); it++)
{
// Process a dictionary word if it is adjacent to current
// word (or vertex) of BFS
string temp = *it;
if (isadjacent(curr.word, temp))
{
// Add the dictionary word to Q
item.word = temp;
item.len = curr.len + 1;
Q.push(item);
// Remove from dictionary so that this word is not
// processed again. This is like marking visited
D.erase(temp);
// If we reached target
if (temp == target)
return item.len;
}
}
}
return 0;
}
// Driver program
int main()
{
// make dictionary
set<string> D;
D.insert("poon");
D.insert("plee");
D.insert("same");
D.insert("poie");
D.insert("plie");
D.insert("poin");
D.insert("plea");
string start = "toon";
string target = "plea";
cout << "Length of shortest chain is: "
<< shortestChainLen(start, target, D);
return 0;
}
Copied from: https://www.geeksforgeeks.org/word-ladder-length-of-shortest-chain-to-reach-a-target-word/
My gut feeling is that your friend is correct, in that there isn't a more efficient solution, but that is assumming you are reloading the dictionary every time. If you were to keep a running database of common transitions, then surely there would be a more efficient method for finding a solution, but you would need to generate the transitions beforehand, and discovering which transitions would be useful (since you can't generate them all!) is probably an art of its own.