I\'m trying to split a photo into multiple pieces using PIL.
def crop(Path,input,height,width,i,k,x,y,page):
im = Image.open(input)
imgwidth = im.siz
Edit: I believe this answer missed the intent to cut an image into rectangles in columns and rows. This answer cuts only into rows. It looks like other answers cut in columns and rows.
Simpler than all these is to use a wheel someone else invented :) It may be more involved to set up, but then it's a snap to use.
These instructions are for Windows 7; they may need to be adapted for other OSs.
Get and install pip from here.
Download the install archive, and extract it to your root Python installation directory. Open a console and type (if I recall correctly):
python get-pip.py install
Then get and install the image_slicer module via pip, by entering the following command at the console:
python -m pip install image_slicer
Copy the image you want to slice into the Python root directory, open a python shell (not the "command line"), and enter these commands:
import image_slicer
image_slicer.slice('huge_test_image.png', 14)
The beauty of this module is that it
crop
would be a more reusable
function if you separate the
cropping code from the
image saving
code. It would also make the call
signature simpler.im.crop
returns a
Image._ImageCrop
instance. Such
instances do not have a save method.
Instead, you must paste the
Image._ImageCrop
instance onto a
new Image.Image
height-2
and not
height
? for example. Why stop at
imgheight-(height/2)
?).So, you might try instead something like this:
import Image
import os
def crop(infile,height,width):
im = Image.open(infile)
imgwidth, imgheight = im.size
for i in range(imgheight//height):
for j in range(imgwidth//width):
box = (j*width, i*height, (j+1)*width, (i+1)*height)
yield im.crop(box)
if __name__=='__main__':
infile=...
height=...
width=...
start_num=...
for k,piece in enumerate(crop(infile,height,width),start_num):
img=Image.new('RGB', (height,width), 255)
img.paste(piece)
path=os.path.join('/tmp',"IMG-%s.png" % k)
img.save(path)
from PIL import Image
def crop(path, input, height, width, k, page, area):
im = Image.open(input)
imgwidth, imgheight = im.size
for i in range(0,imgheight,height):
for j in range(0,imgwidth,width):
box = (j, i, j+width, i+height)
a = im.crop(box)
try:
o = a.crop(area)
o.save(os.path.join(path,"PNG","%s" % page,"IMG-%s.png" % k))
except:
pass
k +=1
Splitting image to tiles of MxN pixels (assuming im is numpy.ndarray):
tiles = [im[x:x+M,y:y+N] for x in range(0,im.shape[0],M) for y in range(0,im.shape[1],N)]
In the case you want to split the image to four pieces:
M = im.shape[0]//2
N = im.shape[1]//2
tiles[0] holds the upper left tile
I tried the solutions above, but sometimes you just gotta do it yourself. Might be off by a pixel in some cases but works fine in general.
import matplotlib.pyplot as plt
import numpy as np
def image_to_tiles(im, number_of_tiles = 4, plot=False):
"""
Function that splits SINGLE channel images into tiles
:param im: image: single channel image (NxN matrix)
:param number_of_tiles: squared number
:param plot:
:return tiles:
"""
n_slices = np.sqrt(number_of_tiles)
assert int(n_slices + 0.5) ** 2 == number_of_tiles, "Number of tiles is not a perfect square"
n_slices = n_slices.astype(np.int)
[w, h] = cropped_npy.shape
r = np.linspace(0, w, n_slices+1)
r_tuples = [(np.int(r[i]), np.int(r[i+1])) for i in range(0, len(r)-1)]
q = np.linspace(0, h, n_slices+1)
q_tuples = [(np.int(q[i]), np.int(q[i+1])) for i in range(0, len(q)-1)]
tiles = []
for row in range(n_slices):
for column in range(n_slices):
[x1, y1, x2, y2] = *r_tuples[row], *q_tuples[column]
tiles.append(im[x1:y1, x2:y2])
if plot:
fig, axes = plt.subplots(n_slices, n_slices, figsize=(10,10))
c = 0
for row in range(n_slices):
for column in range(n_slices):
axes[row,column].imshow(tiles[c])
axes[row,column].axis('off')
c+=1
return tiles
Hope it helps.
import cv2
def crop_image(image_path, output_path):
im = cv2.imread(os.listdir()[2])
imgheight=im.shape[0]
imgwidth=im.shape[1]
y1 = 0
M = 2000
N = 2000
for y in range(0,imgheight,M):
for x in range(0, imgwidth, N):
y1 = y + M
x1 = x + N
tiles = im[y:y+M,x:x+N]
if tiles.shape[0] < 100 or tiles.shape[1]<100:
continue
cv2.rectangle(im, (x, y), (x1, y1), (0, 255, 0))
cv2.imwrite(output_path + str(x) + '_' + str(y)+"{}.png".format(image_path),tiles)
crop_image(os.listdir()[2], './cutted/')