I have been trying to work my way through Project Euler, and have noticed a handful of problems ask for you to determine a prime number as part of it.
I kno
Here's a simple optimization of your method that isn't quite the Sieve of Eratosthenes but is very easy to implement: first try dividing X by 2 and 3, then loop over j=1..sqrt(X)/6, trying to divide by 6*j-1 and 6*j+1. This automatically skips over all numbers divisible by 2 or 3, gaining you a pretty nice constant factor acceleration.
Your right the simples is the slowest. You can optimize it somewhat.
Look into using modulus instead of square roots. Keep track of your primes. you only need to divide 7 by 2, 3, and 5 since 6 is a multiple of 2 and 3, and 4 is a multiple of 2.
Rslite mentioned the eranthenos sieve. It is fairly straight forward. I have it in several languages it home. Add a comment if you want me to post that code later.
Here is my C++ one. It has plenty of room to improve, but it is fast compared to the dynamic languages versions.
// Author: James J. Carman
// Project: Sieve of Eratosthenes
// Description: I take an array of 2 ... max values. Instead of removeing the non prime numbers,
// I mark them as 0, and ignoring them.
// More info: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
#include <iostream>
int main(void) {
// using unsigned short.
// maximum value is around 65000
const unsigned short max = 50000;
unsigned short x[max];
for(unsigned short i = 0; i < max; i++)
x[i] = i + 2;
for(unsigned short outer = 0; outer < max; outer++) {
if( x[outer] == 0)
continue;
unsigned short item = x[outer];
for(unsigned short multiplier = 2; (multiplier * item) < x[max - 1]; multiplier++) {
unsigned int searchvalue = item * multiplier;
unsigned int maxValue = max + 1;
for( unsigned short maxIndex = max - 1; maxIndex > 0; maxIndex--) {
if(x[maxIndex] != 0) {
maxValue = x[maxIndex];
break;
}
}
for(unsigned short searchindex = multiplier; searchindex < max; searchindex++) {
if( searchvalue > maxValue )
break;
if( x[searchindex] == searchvalue ) {
x[searchindex] = 0;
break;
}
}
}
}
for(unsigned short printindex = 0; printindex < max; printindex++) {
if(x[printindex] != 0)
std::cout << x[printindex] << "\t";
}
return 0;
}
I will throw up the Perl and python code I have as well as soon as I find it. They are similar in style, just less lines.
I like this python code.
def primes(limit) :
limit += 1
x = range(limit)
for i in xrange(2,limit) :
if x[i] == i:
x[i] = 1
for j in xrange(i*i, limit, i) :
x[j] = i
return [j for j in xrange(2, limit) if x[j] == 1]
A variant of this can be used to generate the factors of a number.
def factors(limit) :
limit += 1
x = range(limit)
for i in xrange(2,limit) :
if x[i] == i:
x[i] = 1
for j in xrange(i*i, limit, i) :
x[j] = i
result = []
y = limit-1
while x[y] != 1 :
divisor = x[y]
result.append(divisor)
y /= divisor
result.append(y)
return result
Of course, if I were factoring a batch of numbers, I would not recalculate the cache; I'd do it once and do lookups in it.
For reasonably small numbers, x%n for up to sqrt(x) is awfully fast and easy to code.
Simple improvements:
test 2 and odd numbers only.
test 2, 3, and multiples of 6 + or - 1 (all primes other than 2 or 3 are multiples of 6 +/- 1, so you're essentially just skipping all even numbers and all multiples of 3
test only prime numbers (requires calculating or storing all primes up to sqrt(x))
You can use the sieve method to quickly generate a list of all primes up to some arbitrary limit, but it tends to be memory intensive. You can use the multiples of 6 trick to reduce memory usage down to 1/3 of a bit per number.
I wrote a simple prime class (C#) that uses two bitfields for multiples of 6+1 and multiples of 6-1, then does a simple lookup... and if the number i'm testing is outside the bounds of the sieve, then it falls back on testing by 2, 3, and multiples of 6 +/- 1. I found that generating a large sieve actually takes more time than calculating primes on the fly for most of the euler problems i've solved so far. KISS principle strikes again!
I wrote a prime class that uses a sieve to pre-calculate smaller primes, then relies on testing by 2, 3, and multiples of six +/- 1 for ones outside the range of the sieve.