I\'m currently working on a simple 3D panorama viewer for a website. For mobile performance reasons I\'m using the three.js
CSS3 renderer. This requires a cube
A very simple C++ app which converts an equirectangular panorama to cube map based on the answer by Salix Alba => https://github.com/denivip/panorama
Here's a JavaScript version of Benjamn Dobell's code. The convertFace
needs to be passed two ìmageData
objects and a face ID (0-6).
The provided code can safely be used in a web worker, since it has no dependencies.
// convert using an inverse transformation
function convertFace(imgIn, imgOut, faceIdx) {
var inPix = shimImgData(imgIn),
outPix = shimImgData(imgOut),
faceSize = imgOut.width,
pi = Math.PI,
pi_2 = pi/2;
for(var xOut=0;xOut<faceSize;xOut++) {
for(var yOut=0;yOut<faceSize;yOut++) {
var xyz = outImgToXYZ(xOut, yOut, faceIdx, faceSize);
var theta = Math.atan2(xyz.y, xyz.x); // range -pi to pi
var r = Math.hypot(xyz.x,xyz.y);
var phi = Math.atan2(xyz.z,r); // range -pi/2 to pi/2
// source img coords
var uf = 0.5 * imgIn.width * (theta + pi) / pi;
var vf = 0.5 * imgIn.width * (pi_2 - phi) / pi;
// Use bilinear interpolation between the four surrounding pixels
var ui = Math.floor(uf); // coord of pixel to bottom left
var vi = Math.floor(vf);
var u2 = ui+1; // coords of pixel to top right
var v2 = vi+1;
var mu = uf-ui; // fraction of way across pixel
var nu = vf-vi;
// Pixel values of four corners
var A = inPix.getPx(ui % imgIn.width, clip(vi, 0, imgIn.height-1));
var B = inPix.getPx(u2 % imgIn.width, clip(vi, 0, imgIn.height-1));
var C = inPix.getPx(ui % imgIn.width, clip(v2, 0, imgIn.height-1));
var D = inPix.getPx(u2 % imgIn.width, clip(v2, 0, imgIn.height-1));
// interpolate
var rgb = {
r:A[0]*(1-mu)*(1-nu) + B[0]*(mu)*(1-nu) + C[0]*(1-mu)*nu+D[0]*mu*nu,
g:A[1]*(1-mu)*(1-nu) + B[1]*(mu)*(1-nu) + C[1]*(1-mu)*nu+D[1]*mu*nu,
b:A[2]*(1-mu)*(1-nu) + B[2]*(mu)*(1-nu) + C[2]*(1-mu)*nu+D[2]*mu*nu
};
rgb.r=Math.round(rgb.r);
rgb.g=Math.round(rgb.g);
rgb.b=Math.round(rgb.b);
outPix.setPx(xOut, yOut, rgb);
} // for(var yOut=0;yOut<faceSize;yOut++) {...}
} // for(var xOut=0;xOut<faceSize;xOut++) {...}
} // function convertFace(imgIn, imgOut, faceIdx) {...}
// get x,y,z coords from out image pixels coords
// i,j are pixel coords
// faceIdx is face number
// faceSize is edge length
function outImgToXYZ(i, j, faceIdx, faceSize) {
var a = 2 * i / faceSize,
b = 2 * j / faceSize;
switch(faceIdx) {
case 0: // back
return({x:-1, y:1-a, z:1-b});
case 1: // left
return({x:a-1, y:-1, z:1-b});
case 2: // front
return({x: 1, y:a-1, z:1-b});
case 3: // right
return({x:1-a, y:1, z:1-b});
case 4: // top
return({x:b-1, y:a-1, z:1});
case 5: // bottom
return({x:1-b, y:a-1, z:-1});
}
} // function outImgToXYZ(i, j, faceIdx, faceSize) {...}
function clip(val, min, max) {
return(val<min?min:(val>max?max:val));
}
function shimImgData(imgData) {
var w=imgData.width*4,
d=imgData.data;
return({
getPx:function(x,y) {
x=x*4+y*w;
return([ d[x], d[x+1], d[x+2] ]);
},
setPx:function(x,y,rgb) {
x=x*4+y*w;
d[x]=rgb.r;
d[x+1]=rgb.g;
d[x+2]=rgb.b;
d[x+3]=255; // alpha
}
});
} // function shimImgData(imgData) {...}
I created a solution for this problem using OpenGL and made a command line tool around it. It works both with images and videos, and it is the fastest tool that I found out there.
Convert360 - Project on GitHub.
OpenGL Shader - The fragment shader used for the re-projection.
The usage is as simple as:
$ pip install convert360
$ convert360 -i ~/Pictures/Barcelona/sagrada-familia.jpg -o example.png -s 300 300
To get something like this:
cmft Studio supports conversion/filtering
of various HDR/LDR
projections to cubemaps
.
https://github.com/dariomanesku/cmftStudio
Perhaps I am missing something here. But it seems that most if not all the presented transformation code may be somewhat incorrect. They take a spherical panorama (equirectangular --- 360 deg horizontally and 180 deg vertically) and seem to convert to the cube faces using a cartesian <-> cylindrical transformation. Should they not be using a cartesian <-> spherical transformation. See http://mathworld.wolfram.com/SphericalCoordinates.html
I suppose that as long as they reverse the calculation to go from the cube faces to the panorama, then it should work out. But the images of the cube faces may be slightly different when using the spherical transformation.
If I start with this equirectangular (spherical panorama):
Then if I use a cylindrical transformation (which I am not 100% sure is correct at this time), I get this result:
But if I use a spherical transformation, I get this result:
They are not the same. But my spherical transformation result seems to match the result of Danke Xie, but his link does not show the kind of transformation he is using, as best I can read it.
So am I misunderstanding the code being used by many of the contributors to this topic?
UPDATE 2: It looks like someone else had already built a far superior web app than my own. Their conversion runs client side, so there's no uploads/downloads to worry about.
I suppose if you hate JS for some reason, or are trying to do this on your mobile, then my web app below is okay.
UPDATE: I've published a simple web app where you can upload a panorama and have it return the 6 skybox images in a zip.
Source is a cleaned up reimplementation of what's below, and is available on Github.
The app is presently running on a single free-tier Heroku dyno, please don't attempt to use it as an API. If you want automation, make your own deployment; single click Deploy to Heroku available.
ORIGINAL: Here's a (naively) modified version of Salix Alba's absolutely fantastic answer that converts one face at a time, spits out six different images and preserves the original image's file type.
Aside from the fact most use cases probably expect six separate images, the main advantage of converting one face at a time is that it makes working with huge images a lot less memory intensive.
#!/usr/bin/env python
import sys
from PIL import Image
from math import pi, sin, cos, tan, atan2, hypot, floor
from numpy import clip
# get x,y,z coords from out image pixels coords
# i,j are pixel coords
# faceIdx is face number
# faceSize is edge length
def outImgToXYZ(i, j, faceIdx, faceSize):
a = 2.0 * float(i) / faceSize
b = 2.0 * float(j) / faceSize
if faceIdx == 0: # back
(x,y,z) = (-1.0, 1.0 - a, 1.0 - b)
elif faceIdx == 1: # left
(x,y,z) = (a - 1.0, -1.0, 1.0 - b)
elif faceIdx == 2: # front
(x,y,z) = (1.0, a - 1.0, 1.0 - b)
elif faceIdx == 3: # right
(x,y,z) = (1.0 - a, 1.0, 1.0 - b)
elif faceIdx == 4: # top
(x,y,z) = (b - 1.0, a - 1.0, 1.0)
elif faceIdx == 5: # bottom
(x,y,z) = (1.0 - b, a - 1.0, -1.0)
return (x, y, z)
# convert using an inverse transformation
def convertFace(imgIn, imgOut, faceIdx):
inSize = imgIn.size
outSize = imgOut.size
inPix = imgIn.load()
outPix = imgOut.load()
faceSize = outSize[0]
for xOut in xrange(faceSize):
for yOut in xrange(faceSize):
(x,y,z) = outImgToXYZ(xOut, yOut, faceIdx, faceSize)
theta = atan2(y,x) # range -pi to pi
r = hypot(x,y)
phi = atan2(z,r) # range -pi/2 to pi/2
# source img coords
uf = 0.5 * inSize[0] * (theta + pi) / pi
vf = 0.5 * inSize[0] * (pi/2 - phi) / pi
# Use bilinear interpolation between the four surrounding pixels
ui = floor(uf) # coord of pixel to bottom left
vi = floor(vf)
u2 = ui+1 # coords of pixel to top right
v2 = vi+1
mu = uf-ui # fraction of way across pixel
nu = vf-vi
# Pixel values of four corners
A = inPix[ui % inSize[0], clip(vi, 0, inSize[1]-1)]
B = inPix[u2 % inSize[0], clip(vi, 0, inSize[1]-1)]
C = inPix[ui % inSize[0], clip(v2, 0, inSize[1]-1)]
D = inPix[u2 % inSize[0], clip(v2, 0, inSize[1]-1)]
# interpolate
(r,g,b) = (
A[0]*(1-mu)*(1-nu) + B[0]*(mu)*(1-nu) + C[0]*(1-mu)*nu+D[0]*mu*nu,
A[1]*(1-mu)*(1-nu) + B[1]*(mu)*(1-nu) + C[1]*(1-mu)*nu+D[1]*mu*nu,
A[2]*(1-mu)*(1-nu) + B[2]*(mu)*(1-nu) + C[2]*(1-mu)*nu+D[2]*mu*nu )
outPix[xOut, yOut] = (int(round(r)), int(round(g)), int(round(b)))
imgIn = Image.open(sys.argv[1])
inSize = imgIn.size
faceSize = inSize[0] / 4
components = sys.argv[1].rsplit('.', 2)
FACE_NAMES = {
0: 'back',
1: 'left',
2: 'front',
3: 'right',
4: 'top',
5: 'bottom'
}
for face in xrange(6):
imgOut = Image.new("RGB", (faceSize, faceSize), "black")
convertFace(imgIn, imgOut, face)
imgOut.save(components[0] + "_" + FACE_NAMES[face] + "." + components[1])