I\'ve always heard that in C you have to really watch how you manage memory. And I\'m still beginning to learn C, but thus far, I have not had to do any memory managing rela
A thing to remember is to always initialize your pointers to NULL, since an uninitialized pointer may contain a pseudorandom valid memory address which can make pointer errors go ahead silently. By enforcing a pointer to be initialized with NULL, you can always catch if you are using this pointer without initializing it. The reason is that operating systems "wire" the virtual address 0x00000000 to general protection exceptions to trap null pointer usage.
In C, you actually have two different choices. One, you can let the system manage the memory for you. Alternatively, you can do that by yourself. Generally, you would want to stick to the former as long as possible. However, auto-managed memory in C is extremely limited and you will need to manually manage the memory in many cases, such as:
a. You want the variable to outlive the functions, and you don't want to have global variable. ex:
struct pair{ int val; struct pair *next; } struct pair* new_pair(int val){ struct pair* np = malloc(sizeof(struct pair)); np->val = val; np->next = NULL; return np; }
b. you want to have dynamically allocated memory. Most common example is array without fixed length:
int *my_special_array; my_special_array = malloc(sizeof(int) * number_of_element); for(i=0; ic. You want to do something REALLY dirty. For example, I would want a struct to represent many kind of data and I don't like union (union looks soooo messy):
struct data{ int data_type; long data_in_mem; }; struct animal{/*something*/}; struct person{/*some other thing*/}; struct animal* read_animal(); struct person* read_person(); /*In main*/ struct data sample; sampe.data_type = input_type; switch(input_type){ case DATA_PERSON: sample.data_in_mem = read_person(); break; case DATA_ANIMAL: sample.data_in_mem = read_animal(); default: printf("Oh hoh! I warn you, that again and I will seg fault your OS"); }
See, a long value is enough to hold ANYTHING. Just remember to free it, or you WILL regret. This is among my favorite tricks to have fun in C :D.
However, generally, you would want to stay away from your favorite tricks (T___T). You WILL break your OS, sooner or later, if you use them too often. As long as you don't use *alloc and free, it is safe to say that you are still virgin, and that the code still looks nice.
(I'm writing because I feel the answers so far aren't quite on the mark.)
The reason you have to memory management worth mentioning is when you have a problem / solution that requires you to create complex structures. (If your programs crash if you allocate to much space on the stack at once, that's a bug.) Typically, the first data structure you'll need to learn is some kind of list. Here's a single linked one, off the top of my head:
typedef struct listelem { struct listelem *next; void *data;} listelem;
listelem * create(void * data)
{
listelem *p = calloc(1, sizeof(listelem));
if(p) p->data = data;
return p;
}
listelem * delete(listelem * p)
{
listelem next = p->next;
free(p);
return next;
}
void deleteall(listelem * p)
{
while(p) p = delete(p);
}
void foreach(listelem * p, void (*fun)(void *data) )
{
for( ; p != NULL; p = p->next) fun(p->data);
}
listelem * merge(listelem *p, listelem *q)
{
while(p != NULL && p->next != NULL) p = p->next;
if(p) {
p->next = q;
return p;
} else
return q;
}
Naturally, you'd like a few other functions, but basically, this is what you need memory management for. I should point out that there are a number tricks that are possible with "manual" memory management, e.g.,
Get a good debugger... Good luck!
There are some great answers here about how to allocate and free memory, and in my opinion the more challenging side of using C is ensuring that the only memory you use is memory you've allocated - if this isn't done correctly what you end up with is the cousin of this site - a buffer overflow - and you may be overwriting memory that's being used by another application, with very unpredictable results.
An example:
int main() {
char* myString = (char*)malloc(5*sizeof(char));
myString = "abcd";
}
At this point you've allocated 5 bytes for myString and filled it with "abcd\0" (strings end in a null - \0). If your string allocation was
myString = "abcde";
You would be assigning "abcde" in the 5 bytes you've had allocated to your program, and the trailing null character would be put at the end of this - a part of memory that hasn't been allocated for your use and could be free, but could equally be being used by another application - This is the critical part of memory management, where a mistake will have unpredictable (and sometimes unrepeatable) consequences.
Sure. If you create an object that exists outside of the scope you use it in. Here is a contrived example (bear in mind my syntax will be off; my C is rusty, but this example will still illustrate the concept):
class MyClass
{
SomeOtherClass *myObject;
public MyClass()
{
//The object is created when the class is constructed
myObject = (SomeOtherClass*)malloc(sizeof(myObject));
}
public ~MyClass()
{
//The class is destructed
//If you don't free the object here, you leak memory
free(myObject);
}
public void SomeMemberFunction()
{
//Some use of the object
myObject->SomeOperation();
}
};
In this example, I'm using an object of type SomeOtherClass during the lifetime of MyClass. The SomeOtherClass object is used in several functions, so I've dynamically allocated the memory: the SomeOtherClass object is created when MyClass is created, used several times over the life of the object, and then freed once MyClass is freed.
Obviously if this were real code, there would be no reason (aside from possibly stack memory consumption) to create myObject in this way, but this type of object creation/destruction becomes useful when you have a lot of objects, and want to finely control when they are created and destroyed (so that your application doesn't suck up 1GB of RAM for its entire lifetime, for example), and in a Windowed environment, this is pretty much mandatory, as objects that you create (buttons, say), need to exist well outside of any particular function's (or even class') scope.
Also you might want to use dynamic memory allocation when you need to define a huge array, say int[10000]. You can't just put it in stack because then, hm... you'll get a stack overflow.
Another good example would be an implementation of a data structure, say linked list or binary tree. I don't have a sample code to paste here but you can google it easily.