R is new for me and I am working with a (private) data set.
I have the following problem, I have a lot of time series:
2015-04-27  12:29:48
2015-04-         
        using data.table
Test$Datetime <- as.Date(Test$Datetime)
DT<- data.table(Test )
DT[,sum(value),by = Datetime]
     Datetime   V1
1: 2015-04-27 46.1
2: 2015-04-28  3.0
Using the tidyverse, specifically lubridate and dplyr:
library(lubridate)
library(tidyverse)
set.seed(10)
df <- tibble(Datetime = sample(seq(as.POSIXct("2015-04-27"), as.POSIXct("2015-04-29"), by = "min"), 10),
            value = sample(1:100, 10)) %>%
  arrange(Datetime)
df
#> # A tibble: 10 x 2
#>    Datetime            value
#>    <dttm>              <int>
#>  1 2015-04-27 04:04:00    35
#>  2 2015-04-27 10:48:00    41
#>  3 2015-04-27 13:02:00    25
#>  4 2015-04-27 13:09:00     5
#>  5 2015-04-27 14:43:00    57
#>  6 2015-04-27 20:29:00    12
#>  7 2015-04-27 20:34:00    77
#>  8 2015-04-28 00:22:00    66
#>  9 2015-04-28 05:29:00    37
#> 10 2015-04-28 09:14:00    58
df %>%
  mutate(date_col = date(Datetime)) %>%
  group_by(date_col) %>%
  summarize(value = sum(value))
#> # A tibble: 2 x 2
#>   date_col   value
#>   <date>     <int>
#> 1 2015-04-27   252
#> 2 2015-04-28   161
Created on 2018-08-01 by the reprex package (v0.2.0).
Use as.Date() then aggregate().
energy$Date <- as.Date(energy$Datetime)
aggregate(energy$value, by=list(energy$Date), sum)
Emma made a good point about column names. You can preserve column names in aggregate by using the following instead.
aggregate(energy["value"], by=energy["Date"], sum)
you are on the right path - try : 
    summarise(newVal = sum(energy$value) )
for your summarise call.
df<- energy %>% group_by(datetime) %>% summarise(sum =sum(value)) )