I would like to print NumPy tabular array data, so that it looks nice. R and database consoles seem to demonstrate good abilities to do this. However, NumPy\'s built-in prin
The tabulate package works nicely for Numpy arrays:
import numpy as np
from tabulate import tabulate
m = np.array([[1, 2, 3], [4, 5, 6]])
headers = ["col 1", "col 2", "col 3"]
# tabulate data
table = tabulate(m, headers, tablefmt="fancy_grid")
# output
print(table)
(Above code is Python 3; for Python 2 add from __future__ import print_function
at top of script)
Output:
╒═════════╤═════════╤═════════╕
│ col 1 │ col 2 │ col 3 │
╞═════════╪═════════╪═════════╡
│ 1 │ 2 │ 3 │
├─────────┼─────────┼─────────┤
│ 4 │ 5 │ 6 │
╘═════════╧═════════╧═════════╛
The package installs via pip
:
$ pip install tabulate # (use pip3 for Python 3 on some systems)
I seem to be having good output with prettytable:
from prettytable import PrettyTable
x = PrettyTable(dat.dtype.names)
for row in dat:
x.add_row(row)
# Change some column alignments; default was 'c'
x.align['column_one'] = 'r'
x.align['col_two'] = 'r'
x.align['column_3'] = 'l'
And the output is not bad. There is even a border
switch, among a few other options:
>>> print(x)
+------------+---------+-------------+
| column_one | col_two | column_3 |
+------------+---------+-------------+
| 0 | 0.0001 | ABCD |
| 1 | 1e-005 | ABCD |
| 2 | 1e-006 | long string |
| 3 | 1e-007 | ABCD |
+------------+---------+-------------+
>>> print(x.get_string(border=False))
column_one col_two column_3
0 0.0001 ABCD
1 1e-005 ABCD
2 1e-006 long string
3 1e-007 ABCD
You might want to check out Pandas which has a lot of nice features for dealing with tabular data and seems to lay things out better when printing (It is designed be a python replacement for R):
http://pandas.pydata.org/
you can take advantage of array comprehension and use printf format strings:
for c1, c2, c3 in dat:
print "%2f | %8e | %s" % (c1, c2, c3)
https://en.wikipedia.org/wiki/Printf_format_string
And you can get even more customized if you go up to version 2.7