I\'ve been reading about OOP in C but I never liked how you can\'t have private data members like you can in C++. But then it came to my mind that you could create 2 structu
I found that bit-field
might be a good solution if you really want to hide something.
struct person {
unsigned long :64;
char *name;
int age;
};
struct wallet {
char *currency;
double balance;
};
The first member of struct person is an unnamed bit-field. used for a 64-bit pointer
in this case. It's completely hidden and cannot be accessed by struct variable name.
Because of the first 64-bit in this struct is unused, so we can use it as a private pointer. We can access this member by its memory address instead of variable name.
void init_person(struct person* p, struct wallet* w) {
*(unsigned long *)p = (unsigned long)w;
// now the first 64-bit of person is a pointer of wallet
}
struct wallet* get_wallet(struct person* p) {
return (struct wallet*)*(unsigned long *)p;
}
A small working example, tested on my intel mac:
//
// Created by Rieon Ke on 2020/7/6.
//
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#if __x86_64__ || __LP64__
#define PRIVATE_SET(obj, val) *(unsigned long *) obj = (unsigned long) val;
#define PRIVATE_GET(obj, type) (type)*(unsigned long *) obj;
#define PRIVATE_POINTER unsigned long:64
#else
#define PRIVATE_SET(obj, val) *(unsigned int *) obj = (unsigned int) val;
#define PRIVATE_GET(obj, type) (type)*(unsigned int *) obj;
#define PRIVATE_POINTER unsigned int:32
#endif
struct person {
PRIVATE_POINTER;
char *name;
int age;
};
struct wallet {
char *currency;
double balance;
};
int main() {
struct wallet w;
w.currency = strdup("$$");
w.balance = 99.9;
struct person p;
PRIVATE_SET(&p, &w) //set private member
p.name = strdup("JOHN");
p.age = 18;
struct wallet *pw = PRIVATE_GET(&p, struct wallet*) //get private member
assert(strcmp(pw->currency, "$$") == 0);
assert(pw->balance == 99.9);
free(w.currency);
free(p.name);
return 0;
}
This approach is valid, useful, standard C.
A slightly different approach, used by sockets API, which was defined by BSD Unix, is the style used for struct sockaddr
.
I'd write a hidden structure, and reference it using a pointer in the public structure. For example, your .h could have:
typedef struct {
int a, b;
void *private;
} public_t;
And your .c:
typedef struct {
int c, d;
} private_t;
It obviously doesn't protect against pointer arithmetic, and adds a bit of overhead for allocation/deallocation, but I guess it's beyond the scope of the question.
sizeof(SomeStruct) != sizeof(SomeStructSource)
. This will cause someone to find you and murder you someday.
Never do that. If your API supports anything that takes SomeStruct as a parameter (which I'm expecting it does) then they could allocate one on a stack and pass it in. You'd get major errors trying to access the private member since the one the compiler allocates for the client class doesn't contain space for it.
The classic way to hide members in a struct is to make it a void*. It's basically a handle/cookie that only your implementation files know about. Pretty much every C library does this for private data.
You almost have it, but haven't gone far enough.
In the header:
struct SomeStruct;
typedef struct SomeStruct *SomeThing;
SomeThing create_some_thing();
destroy_some_thing(SomeThing thing);
int get_public_member_some_thing(SomeThing thing);
void set_public_member_some_thing(SomeThing thing, int value);
In the .c:
struct SomeStruct {
int public_member;
int private_member;
};
SomeThing create_some_thing()
{
SomeThing thing = malloc(sizeof(*thing));
thing->public_member = 0;
thing->private_member = 0;
return thing;
}
... etc ...
The point is, here now consumers have no knowledge of the internals of SomeStruct, and you can change it with impunity, adding and removing members at will, even without consumers needing to recompile. They also can't "accidentally" munge members directly, or allocate SomeStruct on the stack. This of course can also be viewed as a disadvantage.