The problem:
N points are given on a 2-dimensional plane. What is the maximum number of points on the same straight line?
The problem has O(N2<
This is not a solution better than O(n^2), but you can do the following,
2.Translate this new set of translated points to the angle with respect to the new (0,0).
3.Keep stored the maximum number (MSN) of points that are in each angle.
4.Choose the maximum stored number (MSN), and that will be the solution
The Hough Transform can give you an approximate solution. It is approximate because the binning technique has a limited resolution in parameter space, so the maximum bin will give you some limited range of possible lines.
Again an O(n^2) solution with pseudo code. Idea is create a hash table with line itself as the key. Line is defined by slope between the two points, point where line cuts x-axis and point where line cuts y-axis.
Solution assumes languages like Java, C# where equals method and hashcode methods of the object are used for hashing function.
Create an Object (call SlopeObject) with 3 fields
poix
// Will be (Infinity, some y value) or (x value, 0)poix
will be a point (x, y) pair. If line crosses x-axis the poix
will (some number, 0). If line is parallel to x axis then poix = (Infinity, some number) where y value is where line crosses y axis.
Override equals method where 2 objects are equal if Slope
and poix
are equal.
Hashcode is overridden with a function which provides hashcode based on combination of values of Slope
and poix
. Some pseudo code below
Hashmap map;
foreach(point in the array a) {
foeach(every other point b) {
slope = calculateSlope(a, b);
poix = calculateXInterception(a, b);
SlopeObject so = new SlopeObject(slope, poix, 1); // Slope, poix and intial count 1.
SlopeObject inMapSlopeObj = map.get(so);
if(inMapSlopeObj == null) {
inMapSlopeObj.put(so);
} else {
inMapSlopeObj.setCount(inMapSlopeObj.getCount() + 1);
}
}
}
SlopeObject maxCounted = getObjectWithMaxCount(map);
print("line is through " + maxCounted.poix + " with slope " + maxCounted.slope);
If you limit the problem to lines passing through the origin, you can convert the points to polar coordinates (angle, distance from origin) and sort them by angle. All points with the same angle lie on the same line. O(n logn)
I don't think there is a faster solution in the general case.
As already mentioned, there probably isn't a way to solve the general case of this problem better than O(n^2). However, if you assume a large number of points lie on the same line (say the probability that a random point in the set of points lie on the line with the maximum number of points is p) and don't need an exact algorithm, a randomized algorithm is more efficient.
maxPoints = 0
Repeat for k iterations:
1. Pick 2 random, distinct points uniformly at random
2. maxPoints = max(maxPoints, number of points that lies on the
line defined by the 2 points chosen in step 1)
Note that in the first step, if you picked 2 points which lies on the line with the maximum number of points, you'll get the optimal solution. Assuming n is very large (i.e. we can treat the probability of finding 2 desirable points as sampling with replacement), the probability of this happening is p^2. Therefore the probability of finding a suboptimal solution after k iterations is (1 - p^2)^k.
Suppose you can tolerate a false negative rate rate = err. Then this algorithm runs in O(nk) = O(n * log(err) / log(1 - p^2)). If both n and p are large enough, this is significantly more efficient than O(n^2). (i.e. Supposed n = 1,000,000 and you know there are at least 10,000 points that lie on the same line. Then n^2 would required on the magnitude of 10^12 operations, while randomized algorithm would require on the magnitude of 10^9 operations to get a error rate of less than 5*10^-5.)
It is unlikely for a $o(n^2)$ algorithm to exist, since the problem (of even checking if 3 points in R^2 are collinear) is 3Sum-hard (http://en.wikipedia.org/wiki/3SUM)