I have a dataframe look like this:
import pandas
import numpy as np
df = DataFrame(np.random.rand(4,4), columns = list(\'abcd\'))
df
a b
I think a nice solution is with the function filter of pandas and regex (match everything except "b"):
df.filter(regex="^(?!b$)")
Here is another way:
df[[i for i in list(df.columns) if i != '<your column>']]
You just pass all columns to be shown except of the one you do not want.
Another slight modification to @Salvador Dali enables a list of columns to exclude:
df[[i for i in list(df.columns) if i not in [list_of_columns_to_exclude]]]
or
df.loc[:,[i for i in list(df.columns) if i not in [list_of_columns_to_exclude]]]
Here is a one line lambda:
df[map(lambda x :x not in ['b'], list(df.columns))]
before:
import pandas
import numpy as np
df = pd.DataFrame(np.random.rand(4,4), columns = list('abcd'))
df
a b c d
0 0.774951 0.079351 0.118437 0.735799
1 0.615547 0.203062 0.437672 0.912781
2 0.804140 0.708514 0.156943 0.104416
3 0.226051 0.641862 0.739839 0.434230
after:
df[map(lambda x :x not in ['b'], list(df.columns))]
a c d
0 0.774951 0.118437 0.735799
1 0.615547 0.437672 0.912781
2 0.804140 0.156943 0.104416
3 0.226051 0.739839 0.434230
Don't use ix
. It's deprecated. The most readable and idiomatic way of doing this is df.drop()
:
>>> df
a b c d
0 0.175127 0.191051 0.382122 0.869242
1 0.414376 0.300502 0.554819 0.497524
2 0.142878 0.406830 0.314240 0.093132
3 0.337368 0.851783 0.933441 0.949598
>>> df.drop('b', axis=1)
a c d
0 0.175127 0.382122 0.869242
1 0.414376 0.554819 0.497524
2 0.142878 0.314240 0.093132
3 0.337368 0.933441 0.949598
Note that by default, .drop()
does not operate inplace; despite the ominous name, df
is unharmed by this process. If you want to permanently remove b
from df
, do df.drop('b', inplace=True)
.
df.drop()
also accepts a list of labels, e.g. df.drop(['a', 'b'], axis=1)
will drop column a
and b
.
When the columns are not a MultiIndex, df.columns
is just an array of column names so you can do:
df.loc[:, df.columns != 'b']
a c d
0 0.561196 0.013768 0.772827
1 0.882641 0.615396 0.075381
2 0.368824 0.651378 0.397203
3 0.788730 0.568099 0.869127