I would actually say that functional programming (F#) is much better tool for user interface programming than for example C#. You just need to think about the problem a little bit differently.
I discuss this topic in my functional programming book in Chapter 16, but there is a free excerpt available, which shows (IMHO) the most interesting pattern that you can use in F#. Say you want to implement drawing of rectangles (user pushes the button, moves the mouse and releases the button). In F#, you can write something like this:
let rec drawingLoop(clr, from) = async {
// Wait for the first MouseMove occurrence
let! move = Async.AwaitObservable(form.MouseMove)
if (move.Button &&& MouseButtons.Left) = MouseButtons.Left then
// Refresh the window & continue looping
drawRectangle(clr, from, (move.X, move.Y))
return! drawingLoop(clr, from)
else
// Return the end position of rectangle
return (move.X, move.Y) }
let waitingLoop() = async {
while true do
// Wait until the user starts drawing next rectangle
let! down = Async.AwaitObservable(form.MouseDown)
let downPos = (down.X, down.Y)
if (down.Button &&& MouseButtons.Left) = MouseButtons.Left then
// Wait for the end point of the rectangle
let! upPos = drawingLoop(Color.IndianRed, downPos)
do printfn "Drawn rectangle (%A, %A)" downPos upPos }
This is a very imperative approach (in the usual pragmatic F# style), but it avoids using mutable state for storing the current state of drawing and for storing inital location. It can be made even more functional though, I wrote a library that does that as part of my Master thesis, which should be available on my blog in the next couple of days.
Functional Reactive Programming is a more functional approach, but I find it somewhat harder to use as it relies on quite advanced Haskell features (such as arrows). However, it is very elegant in a large number of cases. It's limitation is that you cannot easily encode a state machine (which is a useful mental model for reactive programs). This is very easy using the F# technique above.