ggplot2 shade area under density curve by group

前端 未结 3 1789
深忆病人
深忆病人 2020-11-29 10:28

I have this dataframe:

set.seed(1)
x <- c(rnorm(50, mean = 1), rnorm(50, mean = 3))
y <- c(rep(\"site1\", 50), rep(\"site2\", 50))
xy <- data.frame(         


        
相关标签:
3条回答
  • 2020-11-29 10:45

    You need to use fill. color controls the outline of the density plot, which is necessary if you want non-black outlines.

    ggplot(xy, aes(x, color=y, fill = y, alpha=0.4)) + geom_density()
    

    To get something like that. Then you can remove the alpha part of the legend by using

    ggplot(xy, aes(x, color = y, fill = y, alpha=0.4)) + geom_density()+ guides(alpha='none')
    
    0 讨论(0)
  • 2020-11-29 10:47

    The problem with @jlhoward's solution is that you need to manually add goem_ribbon for each group you have. I wrote my own ggplot stat wrapper following this vignette. The benefit of this is that it automatically works with group_by and facet and you don't need to manually add geoms for each group.

    StatAreaUnderDensity <- ggproto(
      "StatAreaUnderDensity", Stat,
      required_aes = "x",
      compute_group = function(data, scales, xlim = NULL, n = 50) {
        fun <- approxfun(density(data$x))
        StatFunction$compute_group(data, scales, fun = fun, xlim = xlim, n = n)
      }
    )
    
    stat_aud <- function(mapping = NULL, data = NULL, geom = "area",
                        position = "identity", na.rm = FALSE, show.legend = NA, 
                        inherit.aes = TRUE, n = 50, xlim=NULL,  
                        ...) {
      layer(
        stat = StatAreaUnderDensity, data = data, mapping = mapping, geom = geom, 
        position = position, show.legend = show.legend, inherit.aes = inherit.aes,
        params = list(xlim = xlim, n = n, ...))
    }
    

    Now you can use stat_aud function just like other ggplot geoms.

    set.seed(1)
    x <- c(rnorm(500, mean = 1), rnorm(500, mean = 3))
    y <- c(rep("group 1", 500), rep("group 2", 500))
    t_critical = 1.5
    
    tibble(x=x, y=y)%>%ggplot(aes(x=x,color=y))+
      geom_density()+
      geom_vline(xintercept = t_critical)+
      stat_aud(geom="area",
               aes(fill=y),
               xlim = c(0, t_critical), 
                  alpha = .2)
    

    tibble(x=x, y=y)%>%ggplot(aes(x=x))+
      geom_density()+
      geom_vline(xintercept = t_critical)+
      stat_aud(geom="area",
               fill = "orange",
               xlim = c(0, t_critical), 
                  alpha = .2)+
      facet_grid(~y)
    

    0 讨论(0)
  • 2020-11-29 11:07

    Here is one way (and, as @joran says, this is an extension of the response here):

    #  same data, just renaming columns for clarity later on
    #  also, use data tables
    library(data.table)
    set.seed(1)
    value <- c(rnorm(50, mean = 1), rnorm(50, mean = 3))
    site  <- c(rep("site1", 50), rep("site2", 50))
    dt    <- data.table(site,value)
    #  generate kdf
    gg <- dt[,list(x=density(value)$x, y=density(value)$y),by="site"]
    #  calculate quantiles
    q1 <- quantile(dt[site=="site1",value],0.01)
    q2 <- quantile(dt[site=="site2",value],0.75)
    # generate the plot
    ggplot(dt) + stat_density(aes(x=value,color=site),geom="line",position="dodge")+
      geom_ribbon(data=subset(gg,site=="site1" & x>q1),
                  aes(x=x,ymax=y),ymin=0,fill="red", alpha=0.5)+
      geom_ribbon(data=subset(gg,site=="site2" & x<q2),
                  aes(x=x,ymax=y),ymin=0,fill="blue", alpha=0.5)
    

    Produces this:

    0 讨论(0)
提交回复
热议问题