Is there a difference between generating multiple numbers using a single random number generator (RNG) versus generating one number per generator and discarding it? Do both
As people have already said, it's much better to seed the PRNG once, and reuse it. A secure PRNG is simply one which is suitable for cryptographic applications. The only way re-seeding each time will give reasonably random results is where it comes from a genuinely random "real world" source - ie specialised hardware. Even then, it's possible that the source is biased and it will still be theoretically better to use the same PRNG over.
Well, as long as they are seeded differently each time they're created, then no, I don't think there'd be any difference; however, if it depended on something like the time, then they'd probably be non-uniform, due to the biased seed.
It's generally better to create a single PRNG and pull multiple values from it. Creating multiple instances means you need to ensure that the seeds for the instances are guaranteed unique, which will require incorporating instance-specific information.
As an aside, there are better "true" Random Number Generators, but they usually require specialized hardware which does things like derive random data from electrical signal variance inside the computer. Unless you're really worried about it, I'd say the Pseudo Random Number Generators built into the language libraries and/or OS are probably sufficient, as long as your seed value is not easily predictable.
It's worth mentioning that Haskell is a language which attempts to entirely eliminate mutable state. In order to reconcile this goal with hard-requirements like IO (which requires some form of mutability), monads must be used to thread state from one calculation to the next. In this way, Haskell implements its pseudo-random number generator. Strictly speaking, generating random numbers is an inherently stateful operation, but Haskell is able to hide this fact by moving the state "mutation" into the bind (>>=
) operation.
This probably sounds a little abstract, and it doesn't really answer your question completely, but I think it is still applicable. From a theoretical standpoint, it is impossible to work with a RNG without involving state. Regardless, there are techniques which can be used to mitigate this interaction and make it appear as if the entire operation is of a stateless nature.