How do I reliably get the size of a C-style array? The method often recommended seems to be to use sizeof
, but it doesn\'t work in the foo
function
A common idiom mentioned in GNU Libstdc++ documentation is the lengthof
function:
template<typename T, unsigned int sz>
inline unsigned int lengthof(T (&)[sz]) { return sz; }
You can use it as
int x[] = {1,2,3,4,5};
std::cerr << lengthof(x) << std::endl;
Warning: this will work only when the array has not decayed into a pointer.
Now, you can use C++11's extent and rank.
By example:
#include <iostream>
#include <type_traits>
int main()
{
int a[][3] = {{1, 2, 3}, {4, 5, 6}};
std::cout << "\nRank: : " << std::rank<decltype(a)>::value;
std::cout << "\nSize: [_here_][]: " << std::extent<decltype(a), 0>::value;
std::cout << "\nSize: [][_here_]: " << std::extent<decltype(a), 1>::value;
std::cout << "\nSize: [][]_here_: " << std::extent<decltype(a), 2>::value;
}
prints:
Rank: : 2 Size: [_here_][]: 2 Size: [][_here_]: 3 Size: [][]_here_: 0
How about this?..
template <int N>
void foo(int (&x)[N]) {
std::cerr << N;
}
In C array parameters in C are really just pointers so sizeof()
won't work. You either need to pass in the size as another parameter or use a sentinel - whichever is most appropriate for your design.
Some other options:
Some other info:
for C++, instead of passing a raw array pointer, you might want to have the parameter use something that wraps the array in a class template that keeps track of the array size and provides methods to copy data into the array in a safe manner. Something like STLSoft's array_proxy template or Boost's boost::array might help. I've used an array_proxy
template to nice effect before. Inside the function using the parameter, you get std::vector
like operations, but the caller of the function can be using a simple C array. There's no copying of the array - the array_proxy
template takes care of packaging the array pointer and the array's size nearly automatically.
a macro to use in C for determining the number of elements in an array (for when sizeof() might help - ie., you're not dealing with a simple pointer): Is there a standard function in C that would return the length of an array?
You can either pass the size around, use a sentinel or even better use std::vector. Even though std::vector lacks initializer lists it is still easy to construct a vector with a set of elements (although not quite as nice)
static const int arr[] = {1,2,3,4,5};
vector<int> vec (arr, arr + sizeof(arr) / sizeof(arr[0]) );
The std::vector class also makes making mistakes far harder, which is worth its weight in gold. Another bonus is that all C++ should be familiar with it and most C++ applications should be using a std::vector rather than a raw C array.
As a quick note, C++0x adds Initializer lists
std::vector<int> v = {1, 2, 3, 4};
You can also use Boost.Assign to do the same thing although the syntax is a bit more convoluted.
std::vector<int> v = boost::assign::list_of(1)(2)(3)(4);
or
std::vector<int> v;
v += 1, 2, 3, 4;
I also agree that Corwin's method above is very good.
template <int N>
void foo(int (&x)[N])
{
std::cerr << N;
}
I don't think anybody gave a really good reason why this is not a good idea.
In java, for example, we can write things like:
int numbers [] = {1, 2, 3, 4};
for(int i = 0; i < numbers.length(); i++)
{
System.out.println(numbers[i]+"\n");
}
In C++ it would be nice instead of saying
int numbers [] = {1, 2, 3, 4};
int size = sizeof(numbers)/sizeof(int);
for(int i = 0; i < size; i++)
{
cout << numbers[i] << endl;
}
We could take it a step further and go
template <int N>
int size(int (&X)[N])
{
return N;
}
Or if that causes problems I suppose you could write explicitly:
template < int N >
int size(int (&X)[N])
{
int value = (sizeof(X)/sizeof(X[0]));
return value;
}
Then we just have to go in main:
int numbers [] = {1, 2, 3, 4};
for(int i = 0; i < size(numbers); i++)
{
cout << numbers[i] << endl;
}
makes sense to me :-)