I am trying to find complexity of Fibonacci series using a recursion tree and concluded height of tree = O(n)
worst case, cost of each level = cn
,
t(n)=t(n-1)+t(n-2) which can be solved through tree method:
t(n-1) + t(n-2) 2^1=2
| |
t(n-2)+t(n-3) t(n-3)+t(n-4) 2^2=4
. . 2^3=8
. . .
. . .
similarly for the last level . . 2^n
it will make total time complexity=>2+4+8+.....2^n
after solving the above gp we will get time complexity as O(2^n)
I cannot resist the temptation of connecting a linear time iterative algorithm for Fib to the exponential time recursive one: if one reads Jon Bentley's wonderful little book on "Writing Efficient Algorithms" I believe it is a simple case of "caching": whenever Fib(k) is calculated, store it in array FibCached[k]. Whenever Fib(j) is called, first check if it is cached in FibCached[j]; if yes, return the value; if not use recursion. (Look at the tree of calls now ...)
The complexity of a naive recursive fibonacci is indeed 2ⁿ.
T(n) = T(n-1) + T(n-2) = T(n-2) + T(n-3) + T(n-3) + T(n-4) =
= T(n-3) + T(n-4) + T(n-4) + T(n-5) + T(n-4) + T(n-5) + T(n-5) + T(n-6) = ...
In each step you call T
twice, thus will provide eventual asymptotic barrier of:
T(n) = 2⋅2⋅...⋅2 = 2ⁿ
bonus: The best theoretical implementation to fibonacci is actually a close formula, using the golden ratio:
Fib(n) = (φⁿ – (–φ)⁻ⁿ)/sqrt(5) [where φ is the golden ratio]
(However, it suffers from precision errors in real life due to floating point arithmetics, which are not exact)