import numpy as np
df = spark.createDataFrame(
[(1, 1, None), (1, 2, float(5)), (1, 3, np.nan), (1, 4, None), (1, 5, float(10)), (1, 6, float(\'nan\')), (1, 6,
You can use method shown here and replace isNull
with isnan
:
from pyspark.sql.functions import isnan, when, count, col
df.select([count(when(isnan(c), c)).alias(c) for c in df.columns]).show()
+-------+----------+---+
|session|timestamp1|id2|
+-------+----------+---+
| 0| 0| 3|
+-------+----------+---+
or
df.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in df.columns]).show()
+-------+----------+---+
|session|timestamp1|id2|
+-------+----------+---+
| 0| 0| 5|
+-------+----------+---+
For null values in the dataframe of pyspark
Dict_Null = {col:df.filter(df[col].isNull()).count() for col in df.columns}
Dict_Null
# The output in dict where key is column name and value is null values in that column
{'#': 0,
'Name': 0,
'Type 1': 0,
'Type 2': 386,
'Total': 0,
'HP': 0,
'Attack': 0,
'Defense': 0,
'Sp_Atk': 0,
'Sp_Def': 0,
'Speed': 0,
'Generation': 0,
'Legendary': 0}
An alternative to the already provided ways is to simply filter on the column like so
df = df.where(F.col('columnNameHere').isNull())
This has the added benefit that you don't have to add another column to do the filtering and it's quick on larger data sets.
Here is my one liner. Here 'c' is the name of the column
df.select('c').withColumn('isNull_c',F.col('c').isNull()).where('isNull_c = True').count()
To make sure it does not fail for string
, date
and timestamp
columns:
import pyspark.sql.functions as F
def count_missings(spark_df,sort=True):
"""
Counts number of nulls and nans in each column
"""
df = spark_df.select([F.count(F.when(F.isnan(c) | F.isnull(c), c)).alias(c) for (c,c_type) in spark_df.dtypes if c_type not in ('timestamp', 'string', 'date')]).toPandas()
if len(df) == 0:
print("There are no any missing values!")
return None
if sort:
return df.rename(index={0: 'count'}).T.sort_values("count",ascending=False)
return df
If you want to see the columns sorted based on the number of nans and nulls in descending:
count_missings(spark_df)
# | Col_A | 10 |
# | Col_C | 2 |
# | Col_B | 1 |
If you don't want ordering and see them as a single row:
count_missings(spark_df, False)
# | Col_A | Col_B | Col_C |
# | 10 | 1 | 2 |