I try to run this code:
outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state, sequence_length=real_length)
tensor_shape = outputs.get_shape()
Another way you can do it like this.
aa=tf.Variable(tf.zeros(3, tf.int32))
aa=aa[2].assign(1)
then the output is:
array([0, 0, 1], dtype=int32)
ref:https://www.tensorflow.org/api_docs/python/tf/Variable#assign
As this comment says, a workaround would be to create a NEW tensor with the previous one and a new one on the zones needed.
outputs
with 0's on the indices you want to replace and 1's elsewhere (Can work also with True
and False
)outputs
with the new desired value: new_values
outputs_new = outputs* mask + new_values * (1 - mask)
If you would provide me with an MWE I could do the code for you.
A good reference is this note: How to Replace Values by Index in a Tensor with TensorFlow-2.0
In general, a TensorFlow tensor object is not assignable*, so you cannot use it on the left-hand side of an assignment.
The easiest way to do what you're trying to do is to build a Python list of tensors, and tf.stack() them together at the end of the loop:
outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state,
sequence_length=real_length)
output_list = []
tensor_shape = outputs.get_shape()
for step_index in range(tensor_shape[0]):
word_index = self.x[:, step_index]
word_index = tf.reshape(word_index, [-1,1])
index_weight = tf.gather(word_weight, word_index)
output_list.append(tf.mul(outputs[step_index, :, :] , index_weight))
outputs = tf.stack(output_list)
* With the exception of tf.Variable objects, using the Variable.assign()
etc. methods. However, rnn.rnn()
likely returns a tf.Tensor object that does not support this method.
When you have a tensor already, convert the tensor to a list using tf.unstack (TF2.0) and then use tf.stack like @mrry has mentioned. (when using a multi-dimensional tensor, be aware of the axis argument in unstack)
a_list = tf.unstack(a_tensor)
a_list[50:55] = [np.nan for i in range(6)]
a_tensor = tf.stack(a_list)