I have a matrix A
and I want 2 matrices U
and L
such that U
contains the upper triangular elements of A (all elements abo
To extract the upper triangle values to a flat vector, you can do something like the following:
import numpy as np
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(a)
#array([[1, 2, 3],
# [4, 5, 6],
# [7, 8, 9]])
a[np.triu_indices(3)]
#or
list(a[np.triu_indices(3)])
#array([1, 2, 3, 5, 6, 9])
Similarly, for the lower triangle, use np.tril
.
If you want to extract the values that are above the diagonal (or below) then use the k argument. This is usually used when the matrix is symmetric.
import numpy as np
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
#array([[1, 2, 3],
# [4, 5, 6],
# [7, 8, 9]])
a[np.triu_indices(3, k = 1)]
# this returns the following
array([2, 3, 6])
To put back the extracted vector into a 2D symmetric array, one can follow my answer here: https://stackoverflow.com/a/58806626/5025009
Try numpy.triu (triangle-upper) and numpy.tril (triangle-lower).
Use the Array Creation Routines of numpy.triu and numpy.tril to return a copy of a matrix with the elements above or below the k-th diagonal zeroed.
>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> tri_upper_diag = np.triu(a, k=0)
>>> tri_upper_diag
array([[1, 2, 3],
[0, 5, 6],
[0, 0, 9]])
>>> tri_upper_no_diag = np.triu(a, k=1)
>>> tri_upper_no_diag
array([[0, 2, 3],
[0, 0, 6],
[0, 0, 0]])
>>> tri_lower_diag = np.tril(a, k=0)
>>> tri_lower_diag
array([[1, 0, 0],
[4, 5, 0],
[7, 8, 9]])
>>> tri_lower_no_diag = np.tril(a, k=-1)
>>> tri_lower_no_diag
array([[0, 0, 0],
[4, 0, 0],
[7, 8, 0]])