Is there a library module or other straightforward way to implement multivariate spline interpolation in python?
Specifically, I have a set of scalar data on a regul
Smooth spline interpolation in dim > 2 is difficult to implement, and so there are not many freely available libraries able to do that (in fact, I don't know any).
You can try inverse distance weighted interpolation, see: Inverse Distance Weighted (IDW) Interpolation with Python . This should produce reasonably smooth results, and scale better than RBF to larger data sets.
If I'm understanding your question correctly, your input "observation" data is regularly gridded?
If so, scipy.ndimage.map_coordinates does exactly what you want.
It's a bit hard to understand at first pass, but essentially, you just feed it a sequence of coordinates that you want to interpolate the values of the grid at in pixel/voxel/n-dimensional-index coordinates.
As a 2D example:
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
# Note that the output interpolated coords will be the same dtype as your input
# data. If we have an array of ints, and we want floating point precision in
# the output interpolated points, we need to cast the array as floats
data = np.arange(40).reshape((8,5)).astype(np.float)
# I'm writing these as row, column pairs for clarity...
coords = np.array([[1.2, 3.5], [6.7, 2.5], [7.9, 3.5], [3.5, 3.5]])
# However, map_coordinates expects the transpose of this
coords = coords.T
# The "mode" kwarg here just controls how the boundaries are treated
# mode='nearest' is _not_ nearest neighbor interpolation, it just uses the
# value of the nearest cell if the point lies outside the grid. The default is
# to treat the values outside the grid as zero, which can cause some edge
# effects if you're interpolating points near the edge
# The "order" kwarg controls the order of the splines used. The default is
# cubic splines, order=3
zi = ndimage.map_coordinates(data, coords, order=3, mode='nearest')
row, column = coords
nrows, ncols = data.shape
im = plt.imshow(data, interpolation='nearest', extent=[0, ncols, nrows, 0])
plt.colorbar(im)
plt.scatter(column, row, c=zi, vmin=data.min(), vmax=data.max())
for r, c, z in zip(row, column, zi):
plt.annotate('%0.3f' % z, (c,r), xytext=(-10,10), textcoords='offset points',
arrowprops=dict(arrowstyle='->'), ha='right')
plt.show()
To do this in n-dimensions, we just need to pass in the appropriate sized arrays:
import numpy as np
from scipy import ndimage
data = np.arange(3*5*9).reshape((3,5,9)).astype(np.float)
coords = np.array([[1.2, 3.5, 7.8], [0.5, 0.5, 6.8]])
zi = ndimage.map_coordinates(data, coords.T)
As far as scaling and memory usage goes, map_coordinates
will create a filtered copy of the array if you're using an order > 1 (i.e. not linear interpolation). If you just want to interpolate at a very small number of points, this is a rather large overhead. It doesn't increase with the number points you want to interpolate at, however. As long as have enough RAM for a single temporary copy of your input data array, you'll be fine.
If you can't store a copy of your data in memory, you can either a) specify prefilter=False
and order=1
and use linear interpolation, or b) replace your original data with a filtered version using ndimage.spline_filter
, and then call map_coordinates with prefilter=False
.
Even if you have enough ram, keeping the filtered dataset around can be a big speedup if you need to call map_coordinates multiple times (e.g. interactive use, etc).