How to read a .xlsx file using the pandas Library in iPython?

前端 未结 6 443
生来不讨喜
生来不讨喜 2020-11-28 02:27

I want to read a .xlsx file using the Pandas Library of python and port the data to a postgreSQL table.

All I could do up until now is:

im         


        
相关标签:
6条回答
  • 2020-11-28 03:07

    I usually create a dictionary containing a DataFrame for every sheet:

    xl_file = pd.ExcelFile(file_name)
    
    dfs = {sheet_name: xl_file.parse(sheet_name) 
              for sheet_name in xl_file.sheet_names}
    

    Update: In pandas version 0.21.0+ you will get this behavior more cleanly by passing sheet_name=None to read_excel:

    dfs = pd.read_excel(file_name, sheet_name=None)
    

    In 0.20 and prior, this was sheetname rather than sheet_name (this is now deprecated in favor of the above):

    dfs = pd.read_excel(file_name, sheetname=None)
    
    0 讨论(0)
  • 2020-11-28 03:17

    DataFrame's read_excel method is like read_csv method:

    dfs = pd.read_excel(xlsx_file, sheetname="sheet1")
    
    
    Help on function read_excel in module pandas.io.excel:
    
    read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
        Read an Excel table into a pandas DataFrame
    
        Parameters
        ----------
        io : string, path object (pathlib.Path or py._path.local.LocalPath),
            file-like object, pandas ExcelFile, or xlrd workbook.
            The string could be a URL. Valid URL schemes include http, ftp, s3,
            and file. For file URLs, a host is expected. For instance, a local
            file could be file://localhost/path/to/workbook.xlsx
        sheetname : string, int, mixed list of strings/ints, or None, default 0
    
            Strings are used for sheet names, Integers are used in zero-indexed
            sheet positions.
    
            Lists of strings/integers are used to request multiple sheets.
    
            Specify None to get all sheets.
    
            str|int -> DataFrame is returned.
            list|None -> Dict of DataFrames is returned, with keys representing
            sheets.
    
            Available Cases
    
            * Defaults to 0 -> 1st sheet as a DataFrame
            * 1 -> 2nd sheet as a DataFrame
            * "Sheet1" -> 1st sheet as a DataFrame
            * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
            * None -> All sheets as a dictionary of DataFrames
    
        header : int, list of ints, default 0
            Row (0-indexed) to use for the column labels of the parsed
            DataFrame. If a list of integers is passed those row positions will
            be combined into a ``MultiIndex``
        skiprows : list-like
            Rows to skip at the beginning (0-indexed)
        skip_footer : int, default 0
            Rows at the end to skip (0-indexed)
        index_col : int, list of ints, default None
            Column (0-indexed) to use as the row labels of the DataFrame.
            Pass None if there is no such column.  If a list is passed,
            those columns will be combined into a ``MultiIndex``
        names : array-like, default None
            List of column names to use. If file contains no header row,
            then you should explicitly pass header=None
        converters : dict, default None
            Dict of functions for converting values in certain columns. Keys can
            either be integers or column labels, values are functions that take one
            input argument, the Excel cell content, and return the transformed
            content.
        true_values : list, default None
            Values to consider as True
    
            .. versionadded:: 0.19.0
    
        false_values : list, default None
            Values to consider as False
    
            .. versionadded:: 0.19.0
    
        parse_cols : int or list, default None
            * If None then parse all columns,
            * If int then indicates last column to be parsed
            * If list of ints then indicates list of column numbers to be parsed
            * If string then indicates comma separated list of column names and
              column ranges (e.g. "A:E" or "A,C,E:F")
        squeeze : boolean, default False
            If the parsed data only contains one column then return a Series
        na_values : scalar, str, list-like, or dict, default None
            Additional strings to recognize as NA/NaN. If dict passed, specific
            per-column NA values. By default the following values are interpreted
            as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
        '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'nan'.
        thousands : str, default None
            Thousands separator for parsing string columns to numeric.  Note that
            this parameter is only necessary for columns stored as TEXT in Excel,
            any numeric columns will automatically be parsed, regardless of display
            format.
        keep_default_na : bool, default True
            If na_values are specified and keep_default_na is False the default NaN
            values are overridden, otherwise they're appended to.
        verbose : boolean, default False
            Indicate number of NA values placed in non-numeric columns
        engine: string, default None
            If io is not a buffer or path, this must be set to identify io.
            Acceptable values are None or xlrd
        convert_float : boolean, default True
            convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
            data will be read in as floats: Excel stores all numbers as floats
            internally
        has_index_names : boolean, default None
            DEPRECATED: for version 0.17+ index names will be automatically
            inferred based on index_col.  To read Excel output from 0.16.2 and
            prior that had saved index names, use True.
    
        Returns
        -------
        parsed : DataFrame or Dict of DataFrames
            DataFrame from the passed in Excel file.  See notes in sheetname
            argument for more information on when a Dict of Dataframes is returned.
    
    0 讨论(0)
  • 2020-11-28 03:20

    Assign spreadsheet filename to file

    Load spreadsheet

    Print the sheet names

    Load a sheet into a DataFrame by name: df1

    file = 'example.xlsx'
    xl = pd.ExcelFile(file)
    print(xl.sheet_names)
    df1 = xl.parse('Sheet1')
    
    0 讨论(0)
  • 2020-11-28 03:23
    from pandas import read_excel
    # find your sheet name at the bottom left of your excel file and assign 
    # it to my_sheet 
    my_sheet = 'Sheet1' # change it to your sheet name
    file_name = 'products_and_categories.xlsx' # change it to the name of your excel file
    df = read_excel(file_name, sheet_name = my_sheet)
    print(df.head()) # shows headers with top 5 rows
    
    0 讨论(0)
  • 2020-11-28 03:26

    If you use read_excel() on a file opened using the function open(), make sure to add rb to the open function to avoid encoding errors

    0 讨论(0)
  • 2020-11-28 03:29

    Instead of using a sheet name, in case you don't know or can't open the excel file to check in ubuntu (in my case, Python 3.6.7, ubuntu 18.04), I use the parameter index_col (index_col=0 for the first sheet)

    import pandas as pd
    file_name = 'some_data_file.xlsx' 
    df = pd.read_excel(file_name, index_col=0)
    print(df.head()) # print the first 5 rows
    
    0 讨论(0)
提交回复
热议问题