What is the difference between Numpy\'s array() and asarray() functions? When should you use one rather than the other? They seem to generate identical output for all the in
The definition of asarray is:
def asarray(a, dtype=None, order=None):
return array(a, dtype, copy=False, order=order)
So it is like array
, except it has fewer options, and copy=False
. array
has copy=True
by default.
The main difference is that array
(by default) will make a copy of the object, while asarray
will not unless necessary.
Since other questions are being redirected to this one which ask about asanyarray
or other array creation routines, it's probably worth having a brief summary of what each of them does.
The differences are mainly about when to return the input unchanged, as opposed to making a new array as a copy.
array offers a wide variety of options (most of the other functions are thin wrappers around it), including flags to determine when to copy. A full explanation would take just as long as the docs (see Array Creation, but briefly, here are some examples:
Assume a
is an ndarray
, and m
is a matrix
, and they both have a dtype
of float32
:
np.array(a)
and np.array(m)
will copy both, because that's the default behavior.np.array(a, copy=False)
and np.array(m, copy=False)
will copy m
but not a
, because m
is not an ndarray
.np.array(a, copy=False, subok=True)
and np.array(m, copy=False, subok=True)
will copy neither, because m
is a matrix
, which is a subclass of ndarray
.np.array(a, dtype=int, copy=False, subok=True)
will copy both, because the dtype
is not compatible.Most of the other functions are thin wrappers around array
that control when copying happens:
ndarray
(copy=False
).ndarray
or subclass like matrix
(copy=False
, subok=True
).ndarray
in contiguous C order (copy=False
, order='C')
.ndarray
in contiguous Fortran order (copy=False
, order='F'
).object
array with the iterator); always copied.There are also convenience functions, like asarray_chkfinite (same copying rules as asarray
, but raises ValueError
if there are any nan
or inf
values), and constructors for subclasses like matrix
or for special cases like record arrays, and of course the actual ndarray constructor (which lets you create an array directly out of strides over a buffer).
Here's a simple example that can demonstrate the difference.
The main difference is that array will make a copy of the original data and using different object we can modify the data in the original array.
import numpy as np
a = np.arange(0.0, 10.2, 0.12)
int_cvr = np.asarray(a, dtype = np.int64)
The contents in array (a), remain untouched, and still, we can perform any operation on the data using another object without modifying the content in original array.
The difference can be demonstrated by this example:
generate a matrix
>>> A = numpy.matrix(numpy.ones((3,3)))
>>> A
matrix([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
use numpy.array
to modify A
. Doesn't work because you are modifying a copy
>>> numpy.array(A)[2]=2
>>> A
matrix([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
use numpy.asarray
to modify A
. It worked because you are modifying A
itself
>>> numpy.asarray(A)[2]=2
>>> A
matrix([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 2., 2., 2.]])
Hope this helps!
asarray(x)
is like array(x, copy=False)
Use asarray(x)
when you want to ensure that x
will be an array before any other operations are done. If x
is already an array then no copy would be done. It would not cause a redundant performance hit.
Here is an example of a function that ensure x
is converted into an array first.
def mysum(x):
return np.asarray(x).sum()
The differences are mentioned quite clearly in the documentation of array and asarray. The differences lie in the argument list and hence the action of the function depending on those parameters.
The function definitions are :
numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
and
numpy.asarray(a, dtype=None, order=None)
The following arguments are those that may be passed to array
and not asarray
as mentioned in the documentation :
copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__
returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype, order, etc.).subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default).
ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.