I had this question on an Algorithms test yesterday, and I can\'t figure out the answer. It is driving me absolutely crazy, because it was worth about 40 points. I figure
I think I have found a way of solving the problem, but I can't construct a formal proof. The solution I made is written in Java, and it uses a counter 'n' to count how many list/array accesses it does. So n should be less than or equal to stringLength*log(stringLength) if it is correct. I tried it for the numbers 0 to 2^22, and it works.
It starts by iterating over the input string and making a list of all the indexes which hold a one. This is just O(n).
Then from the list of indexes it picks a firstIndex, and a secondIndex which is greater than the first. These two indexes must hold ones, because they are in the list of indexes. From there the thirdIndex can be calculated. If the inputString[thirdIndex] is a 1 then it halts.
public static int testString(String input){
//n is the number of array/list accesses in the algorithm
int n=0;
//Put the indices of all the ones into a list, O(n)
ArrayList<Integer> ones = new ArrayList<Integer>();
for(int i=0;i<input.length();i++){
if(input.charAt(i)=='1'){
ones.add(i);
}
}
//If less than three ones in list, just stop
if(ones.size()<3){
return n;
}
int firstIndex, secondIndex, thirdIndex;
for(int x=0;x<ones.size()-2;x++){
n++;
firstIndex = ones.get(x);
for(int y=x+1; y<ones.size()-1; y++){
n++;
secondIndex = ones.get(y);
thirdIndex = secondIndex*2 - firstIndex;
if(thirdIndex >= input.length()){
break;
}
n++;
if(input.charAt(thirdIndex) == '1'){
//This case is satisfied if it has found three evenly spaced ones
//System.out.println("This one => " + input);
return n;
}
}
}
return n;
}
additional note: the counter n is not incremented when it iterates over the input string to construct the list of indexes. This operation is O(n), so it won't have an effect on the algorithm complexity anyway.
I suspect that a simple approach that looks like O(n^2) will actually yield something better, like O(n ln(n)). The sequences that take the longest to test (for any given n) are the ones that contain no trios, and that puts severe restrictions on the number of 1's that can be in the sequence.
I've come up with some hand-waving arguments, but I haven't been able to find a tidy proof. I'm going to take a stab in the dark: the answer is a very clever idea that the professor has known for so long that it's come to seem obvious, but it's much too hard for the students. (Either that or you slept through the lecture that covered it.)
Wasn't able to come up with the solution yet :(, but have some ideas.
What if we start from a reverse problem: construct a sequence with the maximum number of 1s and WITHOUT any evenly spaced trios. If you can prove the maximum number of 1s is o(n), then you can improve your estimate by iterating only through list of 1s only.
A fun question, but once you realise that the actual pattern between two '1's does not matter, the algorithm becomes:
In code, JTest fashion, (Note this code isn't written to be most efficient and I added some println's to see what happens.)
import java.util.Random;
import junit.framework.TestCase;
public class AlgorithmTest extends TestCase {
/**
* Constructor for GetNumberTest.
*
* @param name The test's name.
*/
public AlgorithmTest(String name) {
super(name);
}
/**
* @see TestCase#setUp()
*/
protected void setUp() throws Exception {
super.setUp();
}
/**
* @see TestCase#tearDown()
*/
protected void tearDown() throws Exception {
super.tearDown();
}
/**
* Tests the algorithm.
*/
public void testEvenlySpacedOnes() {
assertFalse(isEvenlySpaced(1));
assertFalse(isEvenlySpaced(0x058003));
assertTrue(isEvenlySpaced(0x07001));
assertTrue(isEvenlySpaced(0x01007));
assertTrue(isEvenlySpaced(0x101010));
// some fun tests
Random random = new Random();
isEvenlySpaced(random.nextLong());
isEvenlySpaced(random.nextLong());
isEvenlySpaced(random.nextLong());
}
/**
* @param testBits
*/
private boolean isEvenlySpaced(long testBits) {
String testString = Long.toBinaryString(testBits);
char[] ones = testString.toCharArray();
final char ONE = '1';
for (int n = 0; n < ones.length - 1; n++) {
if (ONE == ones[n]) {
for (int m = n + 1; m < ones.length - m + n; m++) {
if (ONE == ones[m] && ONE == ones[m + m - n]) {
System.out.println(" IS evenly spaced: " + testBits + '=' + testString);
System.out.println(" at: " + n + ", " + m + ", " + (m + m - n));
return true;
}
}
}
}
System.out.println("NOT evenly spaced: " + testBits + '=' + testString);
return false;
}
}
While scanning 1s, add their positions to a List. When adding the second and successive 1s, compare them to each position in the list so far. Spacing equals currentOne (center) - previousOne (left). The right-side bit is currentOne + spacing. If it's 1, the end.
The list of ones grows inversely with the space between them. Simply stated, if you've got a lot of 0s between the 1s (as in a worst case), your list of known 1s will grow quite slowly.
using System;
using System.Collections.Generic;
namespace spacedOnes
{
class Program
{
static int[] _bits = new int[8] {128, 64, 32, 16, 8, 4, 2, 1};
static void Main(string[] args)
{
var bytes = new byte[4];
var r = new Random();
r.NextBytes(bytes);
foreach (var b in bytes) {
Console.Write(getByteString(b));
}
Console.WriteLine();
var bitCount = bytes.Length * 8;
var done = false;
var onePositions = new List<int>();
for (var i = 0; i < bitCount; i++)
{
if (isOne(bytes, i)) {
if (onePositions.Count > 0) {
foreach (var knownOne in onePositions) {
var spacing = i - knownOne;
var k = i + spacing;
if (k < bitCount && isOne(bytes, k)) {
Console.WriteLine("^".PadLeft(knownOne + 1) + "^".PadLeft(spacing) + "^".PadLeft(spacing));
done = true;
break;
}
}
}
if (done) {
break;
}
onePositions.Add(i);
}
}
Console.ReadKey();
}
static String getByteString(byte b) {
var s = new char[8];
for (var i=0; i<s.Length; i++) {
s[i] = ((b & _bits[i]) > 0 ? '1' : '0');
}
return new String(s);
}
static bool isOne(byte[] bytes, int i)
{
var byteIndex = i / 8;
var bitIndex = i % 8;
return (bytes[byteIndex] & _bits[bitIndex]) > 0;
}
}
}
No theoretical answer here, but I wrote a quick Java program to explore the running-time behavior as a function of k and n, where n is the total bit length and k is the number of 1's. I'm with a few of the answerers who are saying that the "regular" algorithm that checks all the pairs of bit positions and looks for the 3rd bit, even though it would require O(k^2) in the worst case, in reality because the worst-case needs sparse bitstrings, is O(n ln n).
Anyway here's the program, below. It's a Monte-Carlo style program which runs a large number of trials NTRIALS for constant n, and randomly generates bitsets for a range of k-values using Bernoulli processes with ones-density constrained between limits that can be specified, and records the running time of finding or failing to find a triplet of evenly spaced ones, time measured in steps NOT in CPU time. I ran it for n=64, 256, 1024, 4096, 16384* (still running), first a test run with 500000 trials to see which k-values take the longest running time, then another test with 5000000 trials with narrowed ones-density focus to see what those values look like. The longest running times do happen with very sparse density (e.g. for n=4096 the running time peaks are in the k=16-64 range, with a gentle peak for mean runtime at 4212 steps @ k=31, max runtime peaked at 5101 steps @ k=58). It looks like it would take extremely large values of N for the worst-case O(k^2) step to become larger than the O(n) step where you scan the bitstring to find the 1's position indices.
package com.example.math;
import java.io.PrintStream;
import java.util.BitSet;
import java.util.Random;
public class EvenlySpacedOnesTest {
static public class StatisticalSummary
{
private int n=0;
private double min=Double.POSITIVE_INFINITY;
private double max=Double.NEGATIVE_INFINITY;
private double mean=0;
private double S=0;
public StatisticalSummary() {}
public void add(double x) {
min = Math.min(min, x);
max = Math.max(max, x);
++n;
double newMean = mean + (x-mean)/n;
S += (x-newMean)*(x-mean);
// this algorithm for mean,std dev based on Knuth TAOCP vol 2
mean = newMean;
}
public double getMax() { return (n>0)?max:Double.NaN; }
public double getMin() { return (n>0)?min:Double.NaN; }
public int getCount() { return n; }
public double getMean() { return (n>0)?mean:Double.NaN; }
public double getStdDev() { return (n>0)?Math.sqrt(S/n):Double.NaN; }
// some may quibble and use n-1 for sample std dev vs population std dev
public static void printOut(PrintStream ps, StatisticalSummary[] statistics) {
for (int i = 0; i < statistics.length; ++i)
{
StatisticalSummary summary = statistics[i];
ps.printf("%d\t%d\t%.0f\t%.0f\t%.5f\t%.5f\n",
i,
summary.getCount(),
summary.getMin(),
summary.getMax(),
summary.getMean(),
summary.getStdDev());
}
}
}
public interface RandomBernoulliProcess // see http://en.wikipedia.org/wiki/Bernoulli_process
{
public void setProbability(double d);
public boolean getNextBoolean();
}
static public class Bernoulli implements RandomBernoulliProcess
{
final private Random r = new Random();
private double p = 0.5;
public boolean getNextBoolean() { return r.nextDouble() < p; }
public void setProbability(double d) { p = d; }
}
static public class TestResult {
final public int k;
final public int nsteps;
public TestResult(int k, int nsteps) { this.k=k; this.nsteps=nsteps; }
}
////////////
final private int n;
final private int ntrials;
final private double pmin;
final private double pmax;
final private Random random = new Random();
final private Bernoulli bernoulli = new Bernoulli();
final private BitSet bits;
public EvenlySpacedOnesTest(int n, int ntrials, double pmin, double pmax) {
this.n=n; this.ntrials=ntrials; this.pmin=pmin; this.pmax=pmax;
this.bits = new BitSet(n);
}
/*
* generate random bit string
*/
private int generateBits()
{
int k = 0; // # of 1's
for (int i = 0; i < n; ++i)
{
boolean b = bernoulli.getNextBoolean();
this.bits.set(i, b);
if (b) ++k;
}
return k;
}
private int findEvenlySpacedOnes(int k, int[] pos)
{
int[] bitPosition = new int[k];
for (int i = 0, j = 0; i < n; ++i)
{
if (this.bits.get(i))
{
bitPosition[j++] = i;
}
}
int nsteps = n; // first, it takes N operations to find the bit positions.
boolean found = false;
if (k >= 3) // don't bother doing anything if there are less than 3 ones. :(
{
int lastBitSetPosition = bitPosition[k-1];
for (int j1 = 0; !found && j1 < k; ++j1)
{
pos[0] = bitPosition[j1];
for (int j2 = j1+1; !found && j2 < k; ++j2)
{
pos[1] = bitPosition[j2];
++nsteps;
pos[2] = 2*pos[1]-pos[0];
// calculate 3rd bit index that might be set;
// the other two indices point to bits that are set
if (pos[2] > lastBitSetPosition)
break;
// loop inner loop until we go out of bounds
found = this.bits.get(pos[2]);
// we're done if we find a third 1!
}
}
}
if (!found)
pos[0]=-1;
return nsteps;
}
/*
* run an algorithm that finds evenly spaced ones and returns # of steps.
*/
public TestResult run()
{
bernoulli.setProbability(pmin + (pmax-pmin)*random.nextDouble());
// probability of bernoulli process is randomly distributed between pmin and pmax
// generate bit string.
int k = generateBits();
int[] pos = new int[3];
int nsteps = findEvenlySpacedOnes(k, pos);
return new TestResult(k, nsteps);
}
public static void main(String[] args)
{
int n;
int ntrials;
double pmin = 0, pmax = 1;
try {
n = Integer.parseInt(args[0]);
ntrials = Integer.parseInt(args[1]);
if (args.length >= 3)
pmin = Double.parseDouble(args[2]);
if (args.length >= 4)
pmax = Double.parseDouble(args[3]);
}
catch (Exception e)
{
System.out.println("usage: EvenlySpacedOnesTest N NTRIALS [pmin [pmax]]");
System.exit(0);
return; // make the compiler happy
}
final StatisticalSummary[] statistics;
statistics=new StatisticalSummary[n+1];
for (int i = 0; i <= n; ++i)
{
statistics[i] = new StatisticalSummary();
}
EvenlySpacedOnesTest test = new EvenlySpacedOnesTest(n, ntrials, pmin, pmax);
int printInterval=100000;
int nextPrint = printInterval;
for (int i = 0; i < ntrials; ++i)
{
TestResult result = test.run();
statistics[result.k].add(result.nsteps);
if (i == nextPrint)
{
System.err.println(i);
nextPrint += printInterval;
}
}
StatisticalSummary.printOut(System.out, statistics);
}
}