I want the same stars for significancies in regression output in stargazer as in the \"normal output\".
I produce data
library(\"stargazer\"); library(\"
It may be a minor issue but Richard's answer is actually not entirely correct -
his stargazer output does not report any standard errors nor potential significance stars for the variable x.
Also when reporting only a single model in stargazer manual coefficients, se, p and t values have to be provided in a list. Otherwise stargazer will report an empty list.
The (slightly) corrected example:
test <- coeftest(model, vcov = vcovHC(model, type="HC3"))
ses <- list(test[, 2])
pvals <- list(test[, 4])
stargazer(model, type="text", p=pvals, se=ses)
Output:
=======================================================================
Dependent variable:
-----------------------------------------
Daily added investors
negative
binomial
-----------------------------------------------------------------------
log(lag_raised_amount + 1) -0.466***
(0.124)
lag_target1 -0.661***
(0.134)
Constant -3.480**
(1.290)
-----------------------------------------------------------------------
Observations 6,513
Log Likelihood -8,834
theta 1.840*** (0.081)
Akaike Inf. Crit. 17,924
=======================================================================
Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
There are inherent dangers associated with the se argument.
When using this approach, the user should be cautious wrt the arguments t.auto and p.auto, both of which default to TRUE. I think it would be cautious to set them both to FALSE, and supply manually t and p values.
Failure to do so, and you risk getting significance stars not in sync with the displayed p-values. (I suspect that stargazer will simply reuse the se, which are now different from the default ones, and recompute the displayed stars using this input; which will naturally yield unexpected results.)
See also:
You need to provide the p values associated with your coeftest. From the man page.
p a list of numeric vectors that will replace the default p-values for each model. Matched by element names. These will form the basis of decisions about significance stars
The following should work.
test <- coeftest(model, vcov = vcovHC(model, type="HC3"))
ses <- test[, 2]
pvals <- test[, 4]
stargazer(model, type="text", p=pvals, se=ses)
This provides the following.
===============================================
Dependent variable:
---------------------------
log(y)
-----------------------------------------------
x -0.00005
Constant 6.956***
(0.003)
-----------------------------------------------
Observations 100
R2 0.026
Adjusted R2 0.016
Residual Std. Error 0.027 (df = 98)
F Statistic 2.620 (df = 1; 98)
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01