I have a directory of images, and a separate file matching image filenames to labels. So the directory of images has files like \'train/001.jpg\' and the labeling file looks lik
Here's what I was able to do.
I first shuffled the filenames and matched the labels to them in Python:
np.random.shuffle(filenames)
labels = [label_dict[f] for f in filenames]
Then created a string_input_producer for the filenames with shuffle off, and a FIFO for labels:
lv = tf.constant(labels)
label_fifo = tf.FIFOQueue(len(filenames),tf.int32, shapes=[[]])
file_fifo = tf.train.string_input_producer(filenames, shuffle=False, capacity=len(filenames))
label_enqueue = label_fifo.enqueue_many([lv])
Then to read the image I could use a WholeFileReader and to get the label I could dequeue the fifo:
reader = tf.WholeFileReader()
image = tf.image.decode_jpeg(value, channels=3)
image.set_shape([128,128,3])
result.uint8image = image
result.label = label_fifo.dequeue()
And generate the batches as follows:
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue)
num_preprocess_threads = 16
images, label_batch = tf.train.shuffle_batch(
[result.uint8image, result.label],
batch_size=FLAGS.batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * FLAGS.batch_size,
min_after_dequeue=min_queue_examples)
I used this:
filename = filename.strip().decode('ascii')
Given that your data is not too large for you to supply the list of filenames as a python array, I'd suggest just doing the preprocessing in Python. Create two lists (same order) of the filenames and the labels, and insert those into either a randomshufflequeue or a queue, and dequeue from that. If you want the "loops infinitely" behavior of the string_input_producer, you could re-run the 'enqueue' at the start of every epoch.
A very toy example:
import tensorflow as tf
f = ["f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8"]
l = ["l1", "l2", "l3", "l4", "l5", "l6", "l7", "l8"]
fv = tf.constant(f)
lv = tf.constant(l)
rsq = tf.RandomShuffleQueue(10, 0, [tf.string, tf.string], shapes=[[],[]])
do_enqueues = rsq.enqueue_many([fv, lv])
gotf, gotl = rsq.dequeue()
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
tf.train.start_queue_runners(sess=sess)
sess.run(do_enqueues)
for i in xrange(2):
one_f, one_l = sess.run([gotf, gotl])
print "F: ", one_f, "L: ", one_l
The key is that you're effectively enqueueing pairs of filenames/labels when you do the enqueue, and those pairs are returned by the dequeue.
Another suggestion is to save your data in TFRecord format. In this case you would be able to save all images and all labels in the same file. For a big number of files it gives a lot of advantages:
There is tf.py_func() you could utilize to implement a mapping from file path to label.
files = gfile.Glob(data_pattern)
filename_queue = tf.train.string_input_producer(
files, num_epochs=num_epochs, shuffle=True) # list of files to read
def extract_label(s):
# path to label logic for cat&dog dataset
return 0 if os.path.basename(str(s)).startswith('cat') else 1
def read(filename_queue):
key, value = reader.read(filename_queue)
image = tf.image.decode_jpeg(value, channels=3)
image = tf.cast(image, tf.float32)
image = tf.image.resize_image_with_crop_or_pad(image, width, height)
label = tf.cast(tf.py_func(extract_label, [key], tf.int64), tf.int32)
label = tf.reshape(label, [])
training_data = [read(filename_queue) for _ in range(num_readers)]
...
tf.train.shuffle_batch_join(training_data, ...)