Given a series of GPS coordinate pairs, I need to calculate the area of a polygon (n-gon). This is relatively small (not larger than 50,000 sqft). The geocodes are created
Thank you Risky Pathak!
In the spirit of sharing, here's my adaptation in Delphi:
interface
uses
System.Math;
TMapGeoPoint = record
Latitude: Double;
Longitude: Double;
end;
function AreaInAcres(AGeoPoints: TList<TMapGeoPoint>): Double;
implementation
function AreaInAcres(AGeoPoints: TList<TMapGeoPoint>): Double;
var
Area: Double;
i: Integer;
P1, P2: TMapGeoPoint;
begin
Area := 0;
// We need at least 2 points
if (AGeoPoints.Count > 2) then
begin
for I := 0 to AGeoPoints.Count - 1 do
begin
P1 := AGeoPoints[i];
if i < AGeoPoints.Count - 1 then
P2 := AGeoPoints[i + 1]
else
P2 := AGeoPoints[0];
Area := Area + DegToRad(P2.Longitude - P1.Longitude) * (2 +
Sin(DegToRad(P1.Latitude)) + Sin(DegToRad(P2.Latitude)));
end;
Area := Area * 6378137 * 6378137 / 2;
end;
Area := Abs(Area); //Area (in sq meters)
// 1 Square Meter = 0.000247105 Acres
result := Area * 0.000247105;
end;
Adapted RiskyPathak's snippet to PHP
function CalculatePolygonArea($coordinates) {
$area = 0;
$coordinatesCount = sizeof($coordinates);
if ($coordinatesCount > 2) {
for ($i = 0; $i < $coordinatesCount - 1; $i++) {
$p1 = $coordinates[$i];
$p2 = $coordinates[$i + 1];
$p1Longitude = $p1[0];
$p2Longitude = $p2[0];
$p1Latitude = $p1[1];
$p2Latitude = $p2[1];
$area += ConvertToRadian($p2Longitude - $p1Longitude) * (2 + sin(ConvertToRadian($p1Latitude)) + sin(ConvertToRadian($p2Latitude)));
}
$area = $area * 6378137 * 6378137 / 2;
}
return abs(round(($area));
}
function ConvertToRadian($input) {
$output = $input * pi() / 180;
return $output;
}
Based on the solution by Risky Pathak here is the solution for SQL (Redshift) to calculate areas for GeoJSON multipolygons (with the assumption that linestring 0 is the outermost polygon)
create or replace view geo_area_area as
with points as (
select ga.id as key_geo_area
, ga.name, gag.linestring
, gag.position
, radians(gag.longitude) as x
, radians(gag.latitude) as y
from geo_area ga
join geo_area_geometry gag on (gag.key_geo_area = ga.id)
)
, polygons as (
select key_geo_area, name, linestring, position
, x
, lag(x) over (partition by key_geo_area, linestring order by position) as prev_x
, y
, lag(y) over (partition by key_geo_area, linestring order by position) as prev_y
from points
)
, area_linestrings as (
select key_geo_area, name, linestring
, abs( sum( (x - prev_x) * (2 + sin(y) + sin(prev_y)) ) ) * 6378137 * 6378137 / 2 / 10^6 as area_km_squared
from polygons
where position != 0
group by 1, 2, 3
)
select key_geo_area, name
, sum(case when linestring = 0 then area_km_squared else -area_km_squared end) as area_km_squared
from area_linestrings
group by 1, 2
;
Adapted RiskyPathak's snippet to Ruby
def deg2rad(input)
input * Math::PI / 180.0
end
def polygone_area(coordinates)
return 0.0 unless coordinates.size > 2
area = 0.0
coor_p = coordinates.first
coordinates[1..-1].each{ |coor|
area += deg2rad(coor[1] - coor_p[1]) * (2 + Math.sin(deg2rad(coor_p[0])) + Math.sin(deg2rad(coor[0])))
coor_p = coor
}
(area * 6378137 * 6378137 / 2.0).abs # 6378137 Earth's radius in meters
end
I am modifying a Google Map so that a user can calculate the area of a polygon by clicking the vertices. It wasn't giving correct areas until I made sure the Math.cos(latAnchor) was in radians first
So:
double xPos = (lon-lonAnchor)*( Math.toRadians( 6378137 ) )*Math.cos( latAnchor );
became:
double xPos = (lon-lonAnchor)*( 6378137*PI/180 ) )*Math.cos( latAnchor*PI/180 );
where lon, lonAnchor and latAnchor are in degrees. Works like a charm now.
1% error seems a bit high due to just your approximation. Are you comparing against actual measurements or some ideal calculation? Remember that there is error in the GPS as well that might be contributing.
If you want a more accurate method for doing this there's a good answer at this question. If you're going for a faster way you can use the WGS84 geoid instead of your reference sphere for converting to cartesian coordinates (ECEF). Here's the wiki link for that conversion.