I just want to ask if my method is correct to convert from little endian to big endian, just to make sure if I understand the difference.
I have a number which is st
One slightly different way of tackling this that can sometimes be useful is to have a union of the sixteen or thirty-two bit value and an array of chars. I've just been doing this when getting serial messages that come in with big endian order, yet am working on a little endian micro.
union MessageLengthUnion
{
uint16_t asInt;
uint8_t asChars[2];
};
Then when I get the messages in I put the first received uint8 in .asChars[1], the second in .asChars[0] then I access it as the .asInt part of the union in the rest of my program.
If you have a thirty-two bit value to store you can have the array four long.
A Simple C program to convert from little to big
#include <stdio.h>
int main() {
unsigned int little=0x1234ABCD,big=0;
unsigned char tmp=0,l;
printf(" Little endian little=%x\n",little);
for(l=0;l < 4;l++)
{
tmp=0;
tmp = little | tmp;
big = tmp | (big << 8);
little = little >> 8;
}
printf(" Big endian big=%x\n",big);
return 0;
}
one more suggestion :
unsigned int a = 0xABCDEF23;
a = ((a&(0x0000FFFF)) << 16) | ((a&(0xFFFF0000)) >> 16);
a = ((a&(0x00FF00FF)) << 8) | ((a&(0xFF00FF00)) >>8);
printf("%0x\n",a);
Sorry, my answer is a bit too late, but it seems nobody mentioned built-in functions to reverse byte order, which in very important in terms of performance.
Most of the modern processors are little-endian, while all network protocols are big-endian. That is history and more on that you can find on Wikipedia. But that means our processors convert between little- and big-endian millions of times while we browse the Internet.
That is why most architectures have a dedicated processor instructions to facilitate this task. For x86 architectures there is BSWAP
instruction, and for ARMs there is REV
. This is the most efficient way to reverse byte order.
To avoid assembly in our C code, we can use built-ins instead. For GCC there is __builtin_bswap32()
function and for Visual C++ there is _byteswap_ulong()
. Those function will generate just one processor instruction on most architectures.
Here is an example:
#include <stdio.h>
#include <inttypes.h>
int main()
{
uint32_t le = 0x12345678;
uint32_t be = __builtin_bswap32(le);
printf("Little-endian: 0x%" PRIx32 "\n", le);
printf("Big-endian: 0x%" PRIx32 "\n", be);
return 0;
}
Here is the output it produces:
Little-endian: 0x12345678
Big-endian: 0x78563412
And here is the disassembly (without optimization, i.e. -O0
):
uint32_t be = __builtin_bswap32(le);
0x0000000000400535 <+15>: mov -0x8(%rbp),%eax
0x0000000000400538 <+18>: bswap %eax
0x000000000040053a <+20>: mov %eax,-0x4(%rbp)
There is just one BSWAP
instruction indeed.
So, if we do care about the performance, we should use those built-in functions instead of any other method of byte reversing. Just my 2 cents.
"I swap each bytes right?" -> yes, to convert between little and big endian, you just give the bytes the opposite order. But at first realize few things:
uint32_t
is 32bits, which is 4 bytes, which is 8 HEX digits0xf
retrieves the 4 least significant bits, to retrieve 8 bits, you need 0xff
so in case you want to swap the order of 4 bytes with that kind of masks, you could:
uint32_t res = 0;
b0 = (num & 0xff) << 24; ; least significant to most significant
b1 = (num & 0xff00) << 8; ; 2nd least sig. to 2nd most sig.
b2 = (num & 0xff0000) >> 8; ; 2nd most sig. to 2nd least sig.
b3 = (num & 0xff000000) >> 24; ; most sig. to least sig.
res = b0 | b1 | b2 | b3 ;
I am assuming you are on linux
Include "byteswap.h"
& Use int32_t bswap_32(int32_t argument);
It is logical view, In actual see, /usr/include/byteswap.h