While reading from a site a read that you can not make a global variable of type register.Why is it so? source: http://publib.boulder.ibm.com/infocenter/lnxpcomp/v8v101/index.js
The register keyword has a different meaning than what its name seems to indicate, nowadays it has not much to do with a register of the processing environment. (Although it probably once was chosen for this.) The only text that constrains the use of a variable that is declared with register is this
The operand of the unary & operator shall be either a function designator, the result of a [] or unary * operator, or an lvalue that designates an object that is not a bit-field and is not declared with the register storage-class specifier
So it implements a restriction to automatic variables (those that you declare in a function) such that it is an error to take the address of such a variable. The idea then is that the compiler may represent this variable in whatever way pleases, as a register or as an immediate assembler value etc. You as a programmer promise that you wouldn't take an address of it. Usually this makes not much sense for global variables (they have an address, anyhow).
To summarize:
register keyword is not
ignored.In theory, you could allocate a processor register to a global scope variable - that register would simply have to remain allocated to that variable for the whole life of the program.
However, C compilers don't generally get to see the entire program during the compile phase - the C standard was written so that each translation unit (roughly corresponding to each .c file) could be compiled independently of the others (with the compiled objects later linked into a program). This is why global scope register variables aren't allowed - when the compiler is compiling b.c, it has no way to know that there was a global variable allocated to a register in a.c (and that therefore functions in b.c must preserve the value in that register).
Some compilers provide a means of dedicating a register permanently to a variable. The register keyword, however, is insufficient. A compiler's decision to allocate the local variables for a routine in registers generally does not require coordination with anything in other source modules (while some development systems do register optimization between routines, it's far more common to simply define the calling convention so that all routines are allowed to freely alter certain registers (so a caller is responsible for saving the contents if they're needed after the function call) but must not alter others (so the called routine is responsible for saving and restoring the contents if the registers are needed in the function). Thus, a linker doesn't need to concern itself with register usage.
Such an approach is fine for local register variables, but useless for global ones. For global register variables to be useful, the programmer must generally tell the compiler which register is to be used for what variable, and make sure that such reservations are known to the compiler when compiling all modules--even those that don't use the register otherwise. This can be useful in embedded systems, especially with variables that are used by interrupts, but there's usually a very limited number (e.g. 2 or so) of such variables allowed in a system.