In this case, you probably want to define a simple function to perform the calculation and get localResult.
def getLocalResult(args):
""" Do whatever you want in this func.
The point is that it takes x,i,j and
returns localResult
"""
x,i,j = args #unpack args
return doSomething(x,i,j)
Now in your computation function, you just create a pool of workers and map the local results:
import multiprocessing
def computation(np=4):
""" np is number of processes to fork """
p = multiprocessing.Pool(np)
output = p.map(getLocalResults, [(x,i,j) for x in range(i,j)] )
return output
I've removed the global here because it's unnecessary (globals are usually unnecessary). In your calling routine you should just do output.extend(computation(np=4)) or something similar.
EDIT
Here's a "working" example of your code:
from multiprocessing import Pool
def computation(args):
length, startPosition, npoints = args
print(args)
length = 100
np=4
p = Pool(processes=np)
p.map(computation, [(startPosition,startPosition+length//np, length//np) for startPosition in range(0, length, length//np)])
Note that what you had didn't work because you were using an instance method as your function. multiprocessing starts new processes and sends the information between processes via pickle, therefore, only objects which can be pickled can be used. Note that it really doesn't make sense to use an instance method anyway. Each process is a copy of the parent, so any changes to state which happen in the processes do not propagate back to the parent anyway.