A lot of questions have been already asked about this topic on SO.
(and many others).
Among the numerous answers, none of them was really helpful to me so far. If I missed
Thank you @ALollz for the "very fresh" link (lucky coincidence) and @Rich Andrews for pointing out that my example actually is not "strictly correct" CSV data.
So, the way it works for me for the time being is adapted from @ALollz' compact solution (https://stackoverflow.com/a/55129746/7295599)
### reading an "incorrect" CSV to dataframe having a variable number of columns/tokens
import pandas as pd
df = pd.read_csv('Test.csv', header=None, sep='\n')
df = df[0].str.split(',', expand=True)
# ... do some modifications with df
### end of code
df
contains empty string ''
for the missing entries at the beginning and the middle, and None
for the missing tokens at the end.
0 1 2 3 4 5 6
0 1 2 3 4 5 None None
1 1 2 3 4 5 6 None
2 3 4 5 None None
3 1 2 3 4 5 6 7
4 2 4 None None None
If you write this again to a file via:
df.to_csv("Test.tab",sep="\t",header=False,index=False)
1 2 3 4 5
1 2 3 4 5 6
3 4 5
1 2 3 4 5 6 7
2 4
None
will be converted to empty string ''
and everything is fine.
The next level would be to account for data strings in quotes which contain the separator, but that's another topic.
1,2,3,4,5
,,3,"Hello, World!",5,6
1,2,3,4,5,6,7