I\'d like to run multiple instances of program.py simultaneously, while limiting the number of instances running at the same time (e.g. to the number of CPU cores available on m
While there are many answers about using multiprocessing.pool, there are not many code snippets on how to use multiprocessing.Process, which is indeed more beneficial when memory usage matters. starting 1000 processes will overload the CPU and kill the memory. If each process and its data pipelines are memory intensive, OS or Python itself will limit the number of parallel processes. I developed the below code to limit the simultaneous number of jobs submitted to the CPU in batches. The batch size can be scaled proportional to the number of CPU cores. In my windows PC, the number of jobs per batch can be efficient upto 4 times the CPU coures available.
import multiprocessing
def func_to_be_multiprocessed(q,data):
q.put(('s'))
q = multiprocessing.Queue()
worker = []
for p in range(number_of_jobs):
worker[p].append(multiprocessing.Process(target=func_to_be_multiprocessed, \
args=(q,data)...))
num_cores = multiprocessing.cpu_count()
Scaling_factor_batch_jobs = 3.0
num_jobs_per_batch = num_cores * Scaling_factor_batch_jobs
num_of_batches = number_of_jobs // num_jobs_per_batch
for i_batch in range(num_of_batches):
floor_job = i_batch * num_jobs_per_batch
ceil_job = floor_job + num_jobs_per_batch
for p in worker[floor_job : ceil_job]:
worker.start()
for p in worker[floor_job : ceil_job]:
worker.join()
for p in worker[ceil_job :]:
worker.start()
for p in worker[ceil_job :]:
worker.join()
for p in multiprocessing.active_children():
p.terminate()
result = []
for p in worker:
result.append(q.get())
The only problem is, if any of the job in any batch could not complete and leads to a hanging situation, rest of the batches of jobs will not be initiated. So, the function to be processed must have proper error handling routines.