How to map a function using multiple columns in pandas?

前端 未结 4 591
南旧
南旧 2021-02-02 11:59

I\'ve checked out map, apply, mapapply, and combine, but can\'t seem to find a simple way of doing the following:

I have a dataframe with 10 columns. I need to pass thre

4条回答
  •  陌清茗
    陌清茗 (楼主)
    2021-02-02 12:18

    For what it's worth on such an old question; I find that zipping function arguments into tuples and then applying the function as a list comprehension is much faster than using df.apply. For example:

    import pandas as pd
    
    # Setup:
    df = pd.DataFrame(np.random.rand(10000, 3), columns=list("abc"))
    def some_func(a, b, c):
        return a*b*c
    
    # Using apply:
    %timeit df['d'] = df.apply(lambda x: some_func(a = x['a'], b = x['b'], c = x['c']), axis=1)
    

    222 ms ± 63.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

    # Using tuples + list comprehension:
    %timeit df["d"] = [some_func(*a) for a in tuple(zip(df["a"], df["b"], df["c"]))]
    

    8.07 ms ± 640 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

提交回复
热议问题