Using Numpy (np.linalg.svd) for Singular Value Decomposition

前端 未结 3 1095
既然无缘
既然无缘 2021-02-02 12:01

Im reading Abdi & Williams (2010) \"Principal Component Analysis\", and I\'m trying to redo the SVD to attain values for further PCA.

The article states that followi

3条回答
  •  长发绾君心
    2021-02-02 12:31

    TL;DR: numpy's SVD computes X = PDQ, so the Q is already transposed.

    SVD decomposes the matrix X effectively into rotations P and Q and the diagonal matrix D. The version of linalg.svd() I have returns forward rotations for P and Q. You don't want to transform Q when you calculate X_a.

    import numpy as np
    X = np.random.normal(size=[20,18])
    P, D, Q = np.linalg.svd(X, full_matrices=False)
    X_a = np.matmul(np.matmul(P, np.diag(D)), Q)
    print(np.std(X), np.std(X_a), np.std(X - X_a))
    

    I get: 1.02, 1.02, 1.8e-15, showing that X_a very accurately reconstructs X.

    If you are using Python 3, the @ operator implements matrix multiplication and makes the code easier to follow:

    import numpy as np
    X = np.random.normal(size=[20,18])
    P, D, Q = np.linalg.svd(X, full_matrices=False)
    X_a = P @ diag(D) @ Q
    print(np.std(X), np.std(X_a), np.std(X - X_a))
    print('Is X close to X_a?', np.isclose(X, X_a).all())
    

提交回复
热议问题