Training a neural network to add

后端 未结 5 1251

I need to train a network to multiply or add 2 inputs, but it doesn\'t seem to approximate well for all points after 20000 iterations. More specifically, I train it on the whole

5条回答
  •  無奈伤痛
    2021-02-02 11:34

    I was trying to do the same. Trained 2,3,4 digit addition and was able to achive 97% accuracy. You can achieve with one of the neural network type,

    Sequence to Sequence Learning with Neural Networks

    A sample program with Juypter Notebook from keras is available at the following link,

    https://github.com/keras-team/keras/blob/master/examples/addition_rnn.py

    Hope it helps.

    Attaching the code here for reference.

    from __future__ import print_function
    from keras.models import Sequential
    from keras import layers
    import numpy as np
    from six.moves import range
    
    
    class CharacterTable(object):
        """Given a set of characters:
        + Encode them to a one hot integer representation
        + Decode the one hot integer representation to their character output
        + Decode a vector of probabilities to their character output
        """
        def __init__(self, chars):
            """Initialize character table.
            # Arguments
                chars: Characters that can appear in the input.
            """
            self.chars = sorted(set(chars))
            self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
            self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
    
        def encode(self, C, num_rows):
            """One hot encode given string C.
            # Arguments
                num_rows: Number of rows in the returned one hot encoding. This is
                    used to keep the # of rows for each data the same.
            """
            x = np.zeros((num_rows, len(self.chars)))
            for i, c in enumerate(C):
                x[i, self.char_indices[c]] = 1
            return x
    
        def decode(self, x, calc_argmax=True):
            if calc_argmax:
                x = x.argmax(axis=-1)
            return ''.join(self.indices_char[x] for x in x)
    
    
    class colors:
        ok = '\033[92m'
        fail = '\033[91m'
        close = '\033[0m'
    
    # Parameters for the model and dataset.
    TRAINING_SIZE = 50000
    DIGITS = 3
    INVERT = True
    
    # Maximum length of input is 'int + int' (e.g., '345+678'). Maximum length of
    # int is DIGITS.
    MAXLEN = DIGITS + 1 + DIGITS
    
    # All the numbers, plus sign and space for padding.
    chars = '0123456789+ '
    ctable = CharacterTable(chars)
    
    questions = []
    expected = []
    seen = set()
    print('Generating data...')
    while len(questions) < TRAINING_SIZE:
        f = lambda: int(''.join(np.random.choice(list('0123456789'))
                        for i in range(np.random.randint(1, DIGITS + 1))))
        a, b = f(), f()
        # Skip any addition questions we've already seen
        # Also skip any such that x+Y == Y+x (hence the sorting).
        key = tuple(sorted((a, b)))
        if key in seen:
            continue
        seen.add(key)
        # Pad the data with spaces such that it is always MAXLEN.
        q = '{}+{}'.format(a, b)
        query = q + ' ' * (MAXLEN - len(q))
        ans = str(a + b)
        # Answers can be of maximum size DIGITS + 1.
        ans += ' ' * (DIGITS + 1 - len(ans))
        if INVERT:
            # Reverse the query, e.g., '12+345  ' becomes '  543+21'. (Note the
            # space used for padding.)
            query = query[::-1]
        questions.append(query)
        expected.append(ans)
    print('Total addition questions:', len(questions))
    
    print('Vectorization...')
    x = np.zeros((len(questions), MAXLEN, len(chars)), dtype=np.bool)
    y = np.zeros((len(questions), DIGITS + 1, len(chars)), dtype=np.bool)
    for i, sentence in enumerate(questions):
        x[i] = ctable.encode(sentence, MAXLEN)
    for i, sentence in enumerate(expected):
        y[i] = ctable.encode(sentence, DIGITS + 1)
    
    # Shuffle (x, y) in unison as the later parts of x will almost all be larger
    # digits.
    indices = np.arange(len(y))
    np.random.shuffle(indices)
    x = x[indices]
    y = y[indices]
    
    # Explicitly set apart 10% for validation data that we never train over.
    split_at = len(x) - len(x) // 10
    (x_train, x_val) = x[:split_at], x[split_at:]
    (y_train, y_val) = y[:split_at], y[split_at:]
    
    print('Training Data:')
    print(x_train.shape)
    print(y_train.shape)
    
    print('Validation Data:')
    print(x_val.shape)
    print(y_val.shape)
    
    # Try replacing GRU, or SimpleRNN.
    RNN = layers.LSTM
    HIDDEN_SIZE = 128
    BATCH_SIZE = 128
    LAYERS = 1
    
    print('Build model...')
    model = Sequential()
    # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE.
    # Note: In a situation where your input sequences have a variable length,
    # use input_shape=(None, num_feature).
    model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, len(chars))))
    # As the decoder RNN's input, repeatedly provide with the last hidden state of
    # RNN for each time step. Repeat 'DIGITS + 1' times as that's the maximum
    # length of output, e.g., when DIGITS=3, max output is 999+999=1998.
    model.add(layers.RepeatVector(DIGITS + 1))
    # The decoder RNN could be multiple layers stacked or a single layer.
    for _ in range(LAYERS):
        # By setting return_sequences to True, return not only the last output but
        # all the outputs so far in the form of (num_samples, timesteps,
        # output_dim). This is necessary as TimeDistributed in the below expects
        # the first dimension to be the timesteps.
        model.add(RNN(HIDDEN_SIZE, return_sequences=True))
    
    # Apply a dense layer to the every temporal slice of an input. For each of step
    # of the output sequence, decide which character should be chosen.
    model.add(layers.TimeDistributed(layers.Dense(len(chars))))
    model.add(layers.Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    model.summary()
    
    # Train the model each generation and show predictions against the validation
    # dataset.
    for iteration in range(1, 200):
        print()
        print('-' * 50)
        print('Iteration', iteration)
        model.fit(x_train, y_train,
                  batch_size=BATCH_SIZE,
                  epochs=1,
                  validation_data=(x_val, y_val))
        # Select 10 samples from the validation set at random so we can visualize
        # errors.
        for i in range(10):
            ind = np.random.randint(0, len(x_val))
            rowx, rowy = x_val[np.array([ind])], y_val[np.array([ind])]
            preds = model.predict_classes(rowx, verbose=0)
            q = ctable.decode(rowx[0])
            correct = ctable.decode(rowy[0])
            guess = ctable.decode(preds[0], calc_argmax=False)
            print('Q', q[::-1] if INVERT else q, end=' ')
            print('T', correct, end=' ')
            if correct == guess:
                print(colors.ok + '☑' + colors.close, end=' ')
            else:
                print(colors.fail + '☒' + colors.close, end=' ')
            print(guess)
    

提交回复
热议问题