I recently asked a question about calculating maximum drawdown where Alexander gave a very succinct and efficient way of calculating it with DataFrame methods in pandas.
Starting with a series of portfolio returns and benchmark returns, we build cumulative returns for both. the variables below are assumed to already be in cumulative return space.
The active return from period j to period i is:
This is how we can extend the absolute solution:
def max_draw_down_relative(p, b):
p = p.add(1).cumprod()
b = b.add(1).cumprod()
pmb = p - b
cam = pmb.expanding(min_periods=1).apply(lambda x: x.argmax())
p0 = pd.Series(p.iloc[cam.values.astype(int)].values, index=p.index)
b0 = pd.Series(b.iloc[cam.values.astype(int)].values, index=b.index)
dd = (p * b0 - b * p0) / (p0 * b0)
mdd = dd.min()
end = dd.argmin()
start = cam.ix[end]
return mdd, start, end
Similar to the absolute case, at each point in time, we want to know what the maximum cumulative active return has been up to that point. We get this series of cumulative active returns with p - b
. The difference is that we want to keep track of what the p and b were at this time and not the difference itself.
So, we generate a series of 'whens' captured in cam
(cumulative argmax) and subsequent series of portfolio and benchmark values at those 'whens'.
p0 = pd.Series(p.ix[cam.values.astype(int)].values, index=p.index)
b0 = pd.Series(b.ix[cam.values.astype(int)].values, index=b.index)
The drawdown caclulation can now be made analogously using the formula above:
dd = (p * b0 - b * p0) / (p0 * b0)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.random.seed(314)
p = pd.Series(np.random.randn(200) / 100 + 0.001)
b = pd.Series(np.random.randn(200) / 100 + 0.001)
keys = ['Portfolio', 'Benchmark']
cum = pd.concat([p, b], axis=1, keys=keys).add(1).cumprod()
cum['Active'] = cum.Portfolio - cum.Benchmark
mdd, sd, ed = max_draw_down_relative(p, b)
f, a = plt.subplots(2, 1, figsize=[8, 10])
cum[['Portfolio', 'Benchmark']].plot(title='Cumulative Absolute', ax=a[0])
a[0].axvspan(sd, ed, alpha=0.1, color='r')
cum[['Active']].plot(title='Cumulative Active', ax=a[1])
a[1].axvspan(sd, ed, alpha=0.1, color='r')