Wikipedia has this to say:
Total functional programming (also known as strong functional programming, to be contrasted with ordinary, or weak functi
If I understood that correctly, Total Functional Programming means just that: Programming with Total Functions. If I remember my math courses correctly, a Total Function is a function which is defined over its entire domain, a Partial Function is one which has "holes" in its definition.
Now, if you have a function which for some input value v goes into an infinite recursion or an infinite loop or in general doesn't terminate in some other fashion, then your function isn't defined for v, and thus partial, i.e. not total.
Total Functional Programming doesn't allow you to write such a function. All functions always return a result for all possible inputs; and the type checker ensures that this is the case.
My guess is that this vastly simplifies error handling: there aren't any.
The downside is already mentioned in your quote: it's not Turing-complete. E.g. an Operating System is essentially a giant infinite loop. Indeed, we do not want an Operating System to terminate, we call this behaviour a "crash" and yell at our computers about it!