I am basically trying to figure out, is the whole \"move semantics\" concept something brand new, or it is just making existing code simpler to implement? I am always interested
This is definitely something new and it goes well beyond just being a way to avoid copying memory.
Move semantics are just what the name implies--that is, a way to explicitly declare instructions for moving objects rather than copying. In addition to the obvious efficiency benefit, this also affords a programmer a standards-compliant way to have objects that are movable but not copyable. Objects that are movable and not copyable convey a very clear boundary of resource ownership via standard language semantics. This was possible in the past, but there was no standard/unified (or STL-compatible) way to do this.
This is a big deal because having a standard and unified semantic benefits both programmers and compilers. Programmers don't have to spend time potentially introducing bugs into a move routine that can reliably be generated by compilers (most cases); compilers can now make appropriate optimizations because the standard provides a way to inform the compiler when and where you're doing standard moves.
Move semantics is particularly interesting because it very well suits the RAII idiom, which is a long-standing a cornerstone of C++ best practice. RAII encompasses much more than just this example, but my point is that move semantics is now a standard way to concisely express (among other things) movable-but-not-copyable objects.
You don't always have to explicitly define this functionality in order to prevent copying. A compiler feature known as "copy elision" will eliminate quite a lot of unnecessary copies from functions that pass by value.
I realize you didn't ask for a code example, but here's a really simple one that might benefit a future reader who might be less familiar with the topic or the relevance of Move Semantics to RAII practices. (If you already understand this, then skip the rest of this answer)
// non-copyable class that manages lifecycle of a resource
// note: non-virtual destructor--probably not an appropriate candidate
// for serving as a base class for objects handled polymorphically.
class res_t {
using handle_t = /* whatever */;
handle_t* handle; // Pointer to owned resource
public:
res_t( const res_t& src ) = delete; // no copy constructor
res_t& operator=( const res_t& src ) = delete; // no copy-assignment
res_t( res_t&& src ) = default; // Move constructor
res_t& operator=( res_t&& src ) = default; // Move-assignment
res_t(); // Default constructor
~res_t(); // Destructor
};
Objects of this class will allocate/provision whatever resource is needed upon construction and then free/release it upon destruction. Since the resource pointed to by the data member can never accidentally be transferred to another object, the rightful owner of a resource is never in doubt. In addition to making your code less prone to abuse or errors (and easily compatible with STL containers), your intentions will be immediately recognized by any programmer familiar with this standard practice.