R has a qr() function, which performs QR decomposition using either LINPACK or LAPACK (in my experience, the latter is 5% faster). The main object returned is a mat
I have researched for this same problem as the OP asks and I don't think it is possible. Basically the OP question is whether having the explicitly computed Q, one can recover the H1 H2 ... Ht. I do not think this is possible without computing the QR from scratch but I would also be very interested to know whether there is such solution.
I have a similar issue as the OP but in a different context, my iterative algorithm needs to mutate the matrix A by adding columns and/or rows. The first time, the QR is computed using DGEQRF and thus, the compact LAPACK format. After the matrix A is mutated e.g. with new rows I can quickly build a new set of reflectors or rotators that will annihilate the non-zero elements of the lowest diagonal of my existing R and build a new R but now I have a set of H1_old H2_old ... Hn_old and H1_new H2_new ... Hn_new (and similarly tau's) which can't be mixed up into a single QR compact representation. The two possibilities I have are, and maybe the OP has the same two possibilities:
The long answer from David basically explains what the compact QR format is but not how to get to this compact QR format having the explicit computed Q and R as input.