Can you cache a virtual function lookup in C++?

前端 未结 9 1139
故里飘歌
故里飘歌 2021-01-31 15:39

Say I have a virtual function call foo() on an abstract base class pointer, mypointer->foo(). When my app starts up, based on the contents of a file, it chooses to instantiate a

9条回答
  •  灰色年华
    2021-01-31 16:06

    Why virtual call is expensive? Because you simply don't know the branch target until the code is executed in runtime. Even modern CPUs are still perfectly handling the virtual call and indirect calls. One can't simply say it costs nothing because we just have a faster CPU. No, it is not.

    1. How can we make it fast?

    You already have pretty deep understanding the problem. But, the only I can say that if the virtual function call is easy to predict, then you could perform software-level optimization. But, if it's not (i.e., you have really no idea what would be the target of the virtual function), then I don't think that there is good solution for now. Even for CPU, it is hard to predict in such extreme case.

    Actually, compilers such as Visual C++'s PGO(Profiling guided optimization) has virtual call speculation optimization (Link). If the profiling result can enumerate hot virtual function targets, then it translate to direct call which can be inlined. This is also called devirtualization. It can be also found in some Java dynamic optimizer.

    2. To those one who say it's not necessary

    If you're using script languages, C# and concern about the coding efficiency, yes, it's worthless. However, anyone who are eager to save a single cycle to obtain better performance, then indirect branch is still important problem. Even the latest CPUs are not good to handle virtual calls. One good example would be a virtual machine or interpreter, which usually have a very large switch-case. Its performance is pretty much related to the correct prediction of indirect branch. So, you can't simply say it's too low-level or not necessary. There are hundreds of people who are trying to improve the performance in the bottom. That's why you can simply ignore such details :)

    3. Some boring computer architectural facts related to virtual functions

    dsimcha has written a good answer for how CPU can handle virtual call effectively. But, it's not exactly correct. First, all modern CPUs have branch predictor, which literally predicts the outcomes of a branch to increase pipeline throughput (or, more parallelism in instruction level, or ILP. I can even say that single-thread CPU performance is solely depending on how much you can extract ILP from a single thread. Branch prediction is the most critical factor for obtaining higher ILP).

    In branch prediction, there are two predictions: (1) direction (i.e., the branch is taken? or not taken? binary answer), and (2) branch target (i.e., where will I go? it's not binary answer). Based on the prediction, CPU speculatively execute the code. If the speculation is not correct, then CPU rollbacks and restarts from the mis-predicted branch. This is completely hidden from programmer's view. So, you don't really know what's going on inside the CPU unless you're profiling with VTune which gives branch misprediction rates.

    In general, branch direction prediction is highly accurate(95%+), but it is still hard to predict branch targets, especially virtual calls and switch-case(i.e., jump table). Vrtual call is indirect branch which requires a more memory load, and also CPU requires branch target prediction. Modern CPUs like Intel's Nehalem and AMD's Phenom have specialized indirect branch target table.

    However, I don't think looking up vtable incurs a lot of overhead. Yes, it requires a more memory load which can make cache miss. But, once vtable is loaded into cache, then it's pretty much cache hit. If you're also concerned with that cost, you may put prefetching code to load vtable in advance. But, the real difficulty of virtual function call is that CPU can't do great job to predict the target of virtual call, which may result in pipeline drain frequently due to misprediction of the target.

提交回复
热议问题