I think I may have implemented this incorrectly because the results do not make sense. I have a Go program that counts to 1000000000:
package main
import (
This scenario will highly favor decent natively-compiled statically-typed languages. Natively compiled statically-typed languages are capable of emitting a very trivial loop of say, 4-6 CPU opcodes that utilizes simple check-condition for termination. This loop has effectively zero branch prediction misses and can be effectively thought of as performing an increment every CPU cycle (this isn't entirely true, but..)
Python implementations have to do significantly more work, primarily due to the dynamic typing. Python must make several different calls (internal and external) just to add two int
s together. In Python it must call __add__
(it is effectively i = i.__add__(1)
, but this syntax will only work in Python 3.x), which in turn has to check the type of the value passed (to make sure it is an int
), then it adds the integer values (extracting them from both of the objects), and then the new integer value is wrapped up again in a new object. Finally it re-assigns the new object to the local variable. That's significantly more work than a single opcode to increment, and doesn't even address the loop itself - by comparison, the Go/native version is likely only incrementing a register by side-effect.
Java will fair much better in a trivial benchmark like this and will likely be fairly close to Go; the JIT and static-typing of the counter variable can ensure this (it uses a special integer add JVM instruction). Once again, Python has no such advantage. Now, there are some implementations like PyPy/RPython, which run a static-typing phase and should fare much better than CPython here ..