I\'ve had this problem for a few years. It was on an informatics contest in my town a while back. I failed to solve it, and my teacher failed to solve it. I haven\'t met anyone
The hexagon is better than the diamond. Consider the percent area of the unit circle covered by each:
#!/usr/bin/env ruby
include Math
def diamond
# The distance from the center to a corner is the radius.
# On a unit circle, that is 1.
radius = 1
# The edge of the nested diamond is the hypotenuse of a
# right triangle whose legs are both radii.
edge = sqrt(radius ** 2 + radius ** 2)
# The area of the diamond is the square of the edge
edge ** 2
end
def hexagon
# The hexagon is composed of 6 equilateral triangles.
# Since the inner edges go from the center to a hexagon
# corner, their length is the radius (1).
radius = 1
# The base and height of an equilateral triangle whose
# edge is 'radius'.
base = radius
height = sin(PI / 3) * radius
# The area of said triangle
triangle_area = 0.5 * base * height
# The area of the hexagon is 6 such triangles
triangle_area * 6
end
def circle
radius = 1
PI * radius ** 2
end
puts "diamond == #{sprintf "%2.2f", (100 * diamond / circle)}%"
puts "hexagon == #{sprintf "%2.2f", (100 * hexagon / circle)}%"
And
$ ./geometrons.rb
diamond == 63.66%
hexagon == 82.70%
Further, regular hexagons are highest-vertex polygon that form a regular tessellation of the plane.