type(A)
A.shape
(8529, 60877)
print A[0,:]
(0, 25) 1.0
(0, 7422) 1.0
(0, 26062) 1.0
(0, 31804) 1.0
(0, 41
To answer your title's question using a different technique than your question's details:
csc_matrix
gives you the method .nonzero()
.
Given:
>>> import numpy as np
>>> from scipy.sparse.csc import csc_matrix
>>>
>>> row = np.array( [0, 1, 3])
>>> col = np.array( [0, 2, 3])
>>> data = np.array([1, 4, 16])
>>> A = csc_matrix((data, (row, col)), shape=(4, 4))
You can access the indices poniting to non-zero data by:
>>> rows, cols = A.nonzero()
>>> rows
array([0, 1, 3], dtype=int32)
>>> cols
array([0, 2, 3], dtype=int32)
Which you can then use to access your data, without ever needing to make a dense version of your sparse matrix:
>>> [((i, j), A[i,j]) for i, j in zip(*A.nonzero())]
[((0, 0), 1), ((1, 2), 4), ((3, 3), 16)]