I\'m writing a game in Haskell, and my current pass at the UI involves a lot of procedural generation of geometry. I am currently focused on identifying performance of one parti
Well, this is better. 3.5s instead of 14s.
{-# LANGUAGE BangPatterns #-}
{-
-- multiply-add of four floats,
Vec4f multiplier, addend;
Vec4f vecList[];
for (int i = 0; i < count; i++)
vecList[i] = vecList[i] * multiplier + addend;
-}
import qualified Data.Vector.Storable as V
import Data.Vector.Storable (Vector)
import Data.Bits
repCount, arraySize :: Int
repCount = 10000
arraySize = 20000
a, m :: Vector Float
a = V.fromList [0.2, 0.1, 0.6, 1.0]
m = V.fromList [0.99, 0.7, 0.8, 0.6]
multAdd :: Int -> Float -> Float
multAdd i v = v * (m `V.unsafeIndex` (i .&. 3)) + (a `V.unsafeIndex` (i .&. 3))
go :: Int -> Vector Float -> Vector Float
go n s
| n <= 0 = s
| otherwise = go (n-1) (f s)
where
f = V.imap multAdd
main = print . V.sum $ go repCount v
where
v :: Vector Float
v = V.replicate (arraySize * 4) 0
-- ^ a flattened Vec4f []
Which is better than it was:
$ ghc -O2 --make A.hs
[1 of 1] Compiling Main ( A.hs, A.o )
Linking A ...
$ time ./A
516748.13
./A 3.58s user 0.01s system 99% cpu 3.593 total
multAdd compiles just fine:
case readFloatOffAddr#
rb_aVn
(word2Int#
(and# (int2Word# sc1_s1Yx) __word 3))
realWorld#
of _ { (# s25_X1Tb, x4_X1Te #) ->
case readFloatOffAddr#
rb11_X118
(word2Int#
(and# (int2Word# sc1_s1Yx) __word 3))
realWorld#
of _ { (# s26_X1WO, x5_X20B #) ->
case writeFloatOffAddr#
@ RealWorld
a17_s1Oe
sc3_s1Yz
(plusFloat#
(timesFloat# x3_X1Qz x4_X1Te) x5_X20B)
However, you're doing 4-element at a time multiplies in the C code, so we'll need to do that directly, rather than faking it by looping and masking. GCC is probably unrolling the loop, too.
So to get identical performance, we'd need the vector multiply (a bit hard, possibly via the LLVM backend) and unroll the loop (possibly fusing it). I'll defer to Roman here to see if there's other obvious things.
One idea might be to actually use a Vector Vec4, rather than flattening it.