You may want to have a look at the ELKI data mining framework. It is supposedly the largest collection of outlier detection data mining algorithms. It's open source software, implemented in Java, and includes some 20+ outlier detection algorithms. See the list of available algorithms.
Note that most of these algorithms are not based on clustering. Many clustering algorithms (in particular k-means) will try to cluster instances "no matter what". Only few clustering algorithms (e.g. DBSCAN) actually consider the case that maybe not all instance belong into clusters! So for some algorithms, outliers will actually prevent a good clustering!