I\'m trying to shuffle a linked list using a divide-and-conquer algorithm that randomly shuffles a linked list in linearithmic (n log n) time and logarithmic (log n) extra space
You can actually do better than that: the best list shuffle algorithm is O(n log n) time and just O(1) space. (You can also shuffle in O(n) time and O(n) space by constructing a pointer array for the list, shuffling it in place using Knuth and re-threading the list accordingly.)
Complexity proof
To see why O(n log n) time is minimal for O(1) space, observe that:
Linked-list data structure (because Python)
import collections
class Cons(collections.Sequence):
def __init__(self, head, tail=None):
self.head = head
self.tail = tail
def __getitem__(self, index):
current, n = self, index
while n > 0:
if isinstance(current, Cons):
current, n = current.tail, n - 1
else:
raise ValueError("Out of bounds index [{0}]".format(index))
return current
def __len__(self):
current, length = self, 0
while isinstance(current, Cons):
current, length = current.tail, length + 1
return length
def __repr__(self):
current, rep = self, []
while isinstance(current, Cons):
rep.extend((str(current.head), "::"))
current = current.tail
rep.append(str(current))
return "".join(rep)
Merge-style algorithm
Here is an O(n log n) time and O(1) space algorithm based on iterative merge sort. The basic idea is simple: shuffle the left half, then the right half, then merge them by randomly selecting from the two lists. Two things worth noting:
import random
def riffle_lists(head, list1, len1, list2, len2):
"""Riffle shuffle two sublists in place. Returns the new last element."""
for _ in range(len1 + len2):
if random.random() < (len1 / (len1 + len2)):
next, list1, len1 = list1, list1.tail, len1 - 1
else:
next, list2, len2 = list2, list2.tail, len2 - 1
head.tail, head = next, next
head.tail = list2
return head
def shuffle_list(list):
"""Shuffle a list in place using an iterative merge-style algorithm."""
dummy = Cons(None, list)
i, n = 1, len(list)
while (i < n):
head, nleft = dummy, n
while (nleft > i):
head = riffle_lists(head, head[1], i, head[i + 1], min(i, nleft - i))
nleft -= 2 * i
i *= 2
return dummy[1]
Another algorithm
Another interesting O(n log n) algorithm that produces not-quite-uniform shuffles involves simply riffle shuffling the list 3/2 log_2(n) times. As described in http://en.wikipedia.org/wiki/Gilbert%E2%80%93Shannon%E2%80%93Reeds_model, this leaves only a constant number of bits of information.